Niepewność, której nie mierzymy. Problem jakości danych w geoinformacji

Mirosław Krukowski

Streszczenie w języku polskim


W artykule analizie poddano problem niepewności w danych GIS, wykraczający poza standardowe parametry techniczne tzw. wielkiej piątki. Wskazano, że tradycyjne raporty pomijają niepewność semantyczną i konceptualną, co jest kluczowe dla obiektów słabo zdefiniowanych. Na przykładach zmian definicji bagien i lasów wykazano, jak brak kontekstu pojęciowego prowadzi do błędnych wniosków analitycznych. Praca zawiera postulat rozszerzenia metadanych o ontologie i kontekst instytucjonalny oraz uwzględnienie nieprzejrzystości modeli GeoAI. Celem jest przejście ku holistycznemu podejściu adekwatności do celu, integrującemu precyzję pomiaru z refleksją nad znaczeniem informacji geograficznej.


Słowa kluczowe


jakość danych geograficznych; niepewność informacji; nieostrość; metadane

Pełny tekst:

PDF

Bibliografia


Agumya, A., Hunter, G.J. (2002). Responding to the Consequences of Uncertainty in Geographical Information. International Journal of Geographical Information Science, 16(5), 405–417. DOI: https://doi.org/10.1080/13658810210137031

Ali, R. (2025). Artificial Intelligence for Land Cover and Land Use Classification in Remote Sensing: Review Study. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-G-2025, 115–122. DOI: https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-115-2025

Bielecka, E. (2010). Metodyka oceny jakości bazy danych obiektów topograficznych. Warszawa: Wojskowa Akademia Techniczna.

Bielecka, E., Burek, E. (2019). Spatial Data Quality and Uncertainty Publication Patterns and Trends by Bibliometric Analysis. Open Geosciences, 11(1), 219–235. DOI: https://doi.org/10.1515/geo-2019-0018

Burrough, P.A. (1996). Natural Objects with Indeterminate Boundaries. W: P.A. Burrough, A.U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries (s. 3–28). London: Taylor and Francis. DOI: https://doi.org/10.1201/9781003062660

Chrisman, N.R. (1991). The Error Component in Spatial Data. W: D.J. Maguire, M.F. Goodchild, D.W. Rhind (Eds.), Geographical Information Systems: Principles and Applications (s. 165–174). London: Longman.

Comber, A., Fisher, P., Wadsworth, R. (2004). Integrating Land-Cover Data with Different Ontologies: Identifying Change from Inconsistency. International Journal of Geographical Information Science, 18(7), 691–708. DOI: https://doi.org/10.1080/13658810410001705316

Comber, A.J., Fisher, P.F., Wadsworth, R.A. (2005). What Is Land Cover? Environment and Planning B: Urban Analytics and City Science, 32(2), 5229–5236. DOI: https://doi.org/10.1068/b31135

Comber, A.J., Fisher, P.F., Harvey, F., Gahegan, M., Wadsworth, R.A. (2006). Using Metadata to Link Uncertainty and Data Quality Assessments. W: Progress in Spatial Data Handling: Proceedings of the 12th International Symposium on Spatial Data Handling (s. 279–292). Berlin: Springer. DOI: https://doi.org/10.1007/3-540-35589-8_18

Dahal, A., Lombardo, L. (2023). Explainable Artificial Intelligence in Geoscience: A Glimpse into the Future of Landslide Susceptibility Modeling, Computers & Geosciences, 176. DOI: https://doi.org/10.1016/j.cageo.2023.105364

Devillers, R., Jeansoulin, R. (Eds.). (2006). Fundamentals of Spatial Data Quality. ISTE. DOI: https://doi.org/10.1002/9780470612156

Duckham, M., Mason, K., Stell, J., Worboys, M.F. (2001). A Formal Approach to Imperfection in Geographic Information. Computers, Environment and Urban Systems, 25(1), 89–103. DOI: https://doi.org/10.1016/S0198-9715(00)00040-5

FAO (2020). Global Forest Resources Assessment 2020: Terms and Definitions. FAO. Online: https://www.fao.org/3/i8661en/i8661en.pdf (dostęp: 13.11.2025).

FGDC (1998). Content Standard for Digital Geospatial Metadata. FGDC.

Fisher, P.F. (1999). Models of Uncertainty in Spatial Data. W: D.J. Maguire, M.F. Goodchild (Eds.), Geographical Information Systems: Principles, Techniques, Applications, and Management (s. 191–205). New York: John Wiley & Sons.

Fisher, P.F. (2000). Sorites Paradox and Vague Geography. Fuzzy Sets and Systems, 113(1), 7–18. DOI: https://doi.org/10.1016/S0165-0114(99)00009-3

Fisher, P.F. (2003). Data Quality and Uncertainty: Ships Passing in the Night. W: M.F. Goodchild, P.F. Fisher (Eds.). Proceedings of the 2nd International Symposium on Spatial Data Quality. Hong Kong: The Hong Kong Polytechnic University.

Frank, A.U. (2001). Tiers of Ontology and Consistency Constraints in Geographic Information Systems. International Journal of Geographical Information Science, 15(7), 667–678. DOI: https://doi.org/10.1080/13658810110061144

Fuller, R., Groom, G.B., Jones, A.R. (1994). The Land Cover Map of Great Britain: An Automated Classification of Landsat Thematic Mapper Data. Photogrammetric Engineering and Remote Sensing, 60(5), 553–562.

Fuller, R.M., Smith, G.M., Sanderson, J.M., Hill, R.A., Thomson, A.G. (2002). The UK Land Cover Map 2000: Construction of a Parcel-Based Vector Map from Satellite Images. The Cartographic Journal, 39(1), 15–25. DOI: https://doi.org/10.1179/caj.2002.39.1.15

Goodchild, M.F., Li, W. (2021). Replication across Space and Time Must Be Weak in the Social and Environmental Sciences. PNAS, 118(35), 1–8. DOI: https://doi.org/10.1073/pnas.2015759118

Guptill, S.C., Morrison, J.L. (Eds.). (1995). Elements of Spatial Data Quality. Oxford: Pergamon. DOI: https://doi.org/10.1016/C2009-0-14900-0

Heuvelink, G.B.M. (1998). Error Propagation in Environmental Modelling with GIS. London: CRC Press. DOI: https://doi.org/10.4324/9780203016114

Hüllermeier, E., Waegeman, W. (2021). Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods. Machine Learning, 110, 457–506. DOI: https://doi.org/10.1007/s10994-021-05946-3

ISO (2023). ISO 19157-1:2023 Geographic Information – Data Quality – Part 1: General Requirements. International Organization for Standardization.

Kinkeldey, C., MacEachren, A.M., Schiewe, J. (2014). How to Assess Visual Communication of Uncertainty? A Systematic Review of Geospatial Uncertainty Visualization User Studies. The Cartographic Journal, 51(4), 372–386. DOI: https://doi.org/10.1179/1743277414Y.0000000099

Klir, G.J., Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Applications. Upper Saddle River: Prentice Hall.

Krukowski, M. (2021). Nieostrość w modelowaniu kartograficznym. Lublin: Wydawnictwo UMCS.

Krukowski, M. (2025). Boundaries That Do Not Exist: Vagueness in Spatial Representation. Prace Geograficzne, 181, 143–158. DOI: https://doi.org/10.4467/20833113PG.25.030.22984

Lund, H.G. (2018). Definitions of Forest, Deforestation, Afforestation, and Reforestation. Gainesville: Forest Information Services. DOI: https://doi.org/10.13140/RG.2.2.31426.48323

MacEachren, A.M., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., Hetzler, E. (2005). Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know. Cartography and Geographic Information Science, 32(3), 139–160. DOI: https://doi.org/10.1559/1523040054738936

Mai, G., Xie, Y., Jia, X., Lao, N., Rao, J., Zhu, Q., Liu, Z., Chiang, Yao-Yi, Jiao, J. (2025). Towards the Next Generation of Geospatial Artificial Intelligence. International Journal of Applied Earth Observation and Geoinformation, 136. DOI: https://doi.org/10.1016/j.jag.2025.104368

Moellering, H. (1987). A Draft Proposed Standard for Digital Cartographic Data. Columbus: National Committee for Digital Cartographic Data Standards.

Pawlak, Z. (1982). Rough Sets. International Journal of Computer & Information Sciences, 11(5), DOI: https://doi.org/10.1007/BF01001956

Rosch, E. (1978). Principles of Categorization. W: E. Rosch, B.B. Lloyd (Eds.), Cognition and Categorization (s. 27–48). Hillsdale: Lawrence Erlbaum Associates.

Rozporządzenie (2021). Rozporządzenie Ministra Rozwoju, Pracy i Technologii z dnia 27 lipca 2021 r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektów ogólnogeograficznych, a także standardowych opracowań kartograficznych (Dz.U. 2021, poz. 1412).

Salgé, F. (1995). Semantic Accuracy. W: S.C. Guptill, J.L. Morrison (Eds.), Elements of Spatial Data Quality (s. 139–151). Oxford: Pergamon. DOI: https://doi.org/10.1016/C2009-0-14900-0

Smith, B., Mark, D.M. (2003). Do Mountains Exist? Towards an Ontology of Landforms. Environment and Planning B: Planning and Design, 30(3), 411–427. DOI: https://doi.org/10.1068/b1282

Tabakowska, E. (2001). Kognitywne podstawy języka i językoznawstwa. Kraków: Universitas.

Ustawa (1991). Ustawa z dnia 28 września 1991 r. o lasach (Dz.U. 1991, nr 101, poz. 444).

Valle, D., Izbicki, R., Vieira Leite, R. (2023). Quantifying Uncertainty in Land-Use Land-Cover Classification Using Conformal Statistics. Remote Sensing of Environment, 295. DOI: https://doi.org/10.1016/j.rse.2023.113682

Veregin, H. (1999). Data Quality Parameters. W: P.A. Longley, M.F. Goodchild, D.J. Maguire, D.W. Rhind (Eds.). Geographic Information Systems: Principles and Technical Issues (s. 17–189). New York: John Wiley & Sons.

Vukalić, A., Triglav Čekada, M., Petrovič, D. (2024). OpenStreetMap Data Quality Assessment According to ISO 19157-1:2023. Abstracts of the ICA, 7, 182. DOI: https://doi.org/10.5194/ica-abs-7-182-2024

WIG (1925). Instrukcja topograficzna Wojskowego Instytutu Geograficznego, Cz. 2: Techniczna. Warszawa: Wojskowy Instytut Geograficzny.

Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8(3), 338–353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X




DOI: http://dx.doi.org/10.17951/b.2025.80.0.299-315
Data publikacji: 2026-01-11 16:34:21
Data złożenia artykułu: 2025-12-17 15:29:46


Statystyki


Widoczność abstraktów - 0
Pobrania artykułów (od 2020-06-17) - PDF - 0

Wskaźniki



Odwołania zewnętrzne

  • Brak odwołań zewnętrznych


Prawa autorskie (c) 2026 Mirosław Krukowski

Creative Commons License
Powyższa praca jest udostępniana na lcencji Creative Commons Attribution 4.0 International License.