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Niepewność, której nie mierzymy. 
Problem jakości danych w geoinformacji

The Uncertainty We Do Not Measure: The Problem of Data Quality in Geoinformation

Abstract: This article examines the problem of uncertainty in GIS data that extends beyond the 
standard technical parameters of the “big five”. It is argued that traditional reports overlook semantic 
and conceptual uncertainty, which is crucial for poorly-defined geographical objects. Using exam-
ples of marsh and forest definition changes, it demonstrates how a lack of conceptual context leads 
to erroneous analytical conclusions. The paper proposes extending metadata to include ontologies, 
institutional context, and the opacity of GeoAI models. The goal is to shift towards a holistic fit-for- 
-purpose approach, integrating measurement precision with a reflection on the meaning of geographic 
information.
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Abstrakt: W artykule analizie poddano problem niepewności w danych GIS, wykraczający poza 
standardowe parametry techniczne tzw. wielkiej piątki. Wskazano, że tradycyjne raporty pomijają 
niepewność semantyczną i konceptualną, co jest kluczowe dla obiektów słabo zdefiniowanych. Na 
przykładach zmian definicji bagien i lasów wykazano, jak brak kontekstu pojęciowego prowadzi 
do błędnych wniosków analitycznych. Praca zawiera postulat rozszerzenia metadanych o ontologie 
i kontekst instytucjonalny oraz uwzględnienie nieprzejrzystości modeli GeoAI. Celem jest przejście 
ku holistycznemu podejściu adekwatności do celu, integrującemu precyzję pomiaru z refleksją nad 
znaczeniem informacji geograficznej.
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WSTĘP

Jakość danych geoinformacyjnych zazwyczaj jest oceniana poprzez mierzalne 
parametry, takie jak dokładność położenia, kompletność czy spójność logiczna, 
które podlegają raportowaniu w metadanych oraz procedurach walidacyjnych 
(Chrisman, 1991; Federal Geographic Data Committee [FGDC], 1998; ISO, 2023). 
W praktyce dokumentacyjnej powszechnie utrwalił się zestaw pięciu kategorii 
(tzw. wielka piątka): dokładność pozycyjna, dokładność tematyczna, spójność 
logiczna, kompletność oraz rodowód (lineage). Model ten, zaproponowany pier-
wotnie w standardzie SDTS, znajduje szerokie zastosowanie u producentów danych 
w celu zapewnienia interoperacyjności procesów transferu zbiorów (Bielecka, 
2010; Guptill i Morrison, 1995). Jednocześnie analiza literatury z zakresu jakości 
i niepewności danych przestrzennych wykazuje, że pole badawcze ulega dyna-
micznej ewolucji, obejmując nie tylko metryki techniczne, lecz także problematykę 
propagacji niedoskonałości w złożonych strukturach analitycznych i procesach 
decyzyjnych (Bielecka i Burek, 2019; Heuvelink, 1998).

Zasadniczy problem wynika z faktu, że niepewność pojmowana w ujęciu holi-
stycznym – jako niepewność dotycząca semantyki, adekwatności oraz interpretacji 
informacji (Burrough, 1996; Duckham i in., 2001) – bywa w tradycyjnych systemach 
raportowania niedoreprezentowana. Stan ten jest determinowany trudnością w forma-
lizacji tych aspektów i sprowadzeniu ich do pojedynczych miar statystycznych. Fisher 
(2003) określił tę sytuację metaforą „dwóch okrętów mijających się nocą”, wskazując 
na izolowany rozwój teoretycznych studiów nad niepewnością względem procesów 
standaryzacji jakości danych. W konsekwencji współczesne systemy informacji 
geograficznej (GIS – Geographic Information Systems) mogą nie dostarczać wy-
czerpującej wiedzy o immanentnych ograniczeniach zbiorów, zwłaszcza w zakresie 
niepewności konceptualnej i semantycznej związanej z definicją i interpretacją klas 
obiektów (Comber i in., 2005; Salgé, 1995). Zagadnienie to ma kluczowe znaczenie 
metodologiczne oraz epistemologiczne, gdyż bezpośrednio warunkuje poziom za-
ufania użytkownika do generowanych wyników (Agumya i Hunter, 2002).

W artykule podjęto próbę analizy powyższej problematyki poprzez identyfikację 
luk w obecnych praktykach standaryzacyjnych (m.in. w kontekście normy ISO 19157-
1:2023) oraz systematyzację pojęcia niepewności informacji przestrzennej. Przedsta-
wiono propozycję rozszerzenia koncepcji jakości danych o nieostrość (vagueness) 
oraz inne, dotychczas marginalizowane aspekty niepewności, które w modelowaniu 
kartograficznym odgrywają rolę równie istotną, co błędy pomiarowe (Krukowski, 
2021). Poprzez połączenie podejścia technicznego z analizą ontologiczną sformułowa-
no postulaty dotyczące kierunków rozwoju metadanych, które uwzględniają kontekst 
semantyczny informacji geograficznej oraz specyficzne potrzeby ich odbiorców.
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WSPÓŁCZESNE RAPORTOWANIE JAKOŚCI DANYCH 
GEOINFORMACYJNYCH

Obecne metodyki dokumentowania jakości danych przestrzennych są ściśle 
sformalizowane przez standardy międzynarodowe oraz krajowe, które opisują 
jakość za pomocą rygorystycznego zestawu mierzalnych elementów technicznych 
(Guptill i Morrison, 1995; Veregin, 1999). Zestawy te obejmują przede wszystkim 
pięć podstawowych parametrów, zdefiniowanych pierwotnie w raporcie Moelle-
ringa z 1987 roku dla Międzynarodowej Asocjacji Kartograficznej, które stanowią 
fundament oceny przydatności zbiorów danych (Moellering, 1987). Należą do nich:

−	 dokładność położenia – określa stopień zgodności współrzędnych obiektów 
zapisanych w bazie danych z ich rzeczywistą lokalizacją w przyjętym ukła-
dzie odniesienia, uwzględnia błędy pomiarowe oraz błędy transformacji;

−	 dokładność atrybutowa – rozumiana jako poprawność cech opisowych 
przypisanych do obiektów przestrzennych, obejmuje zarówno błędy kla-
syfikacji cech jakościowych, jak i błędy pomiaru cech ilościowych;

−	 kompletność – informuje o stopniu nadmiarowości (obecności obiektów 
niepotrzebnych) lub braków w zbiorze danych w stosunku do obiektów, 
które powinny się w nim znajdować zgodnie ze specyfikacją;

−	 spójność logiczna – weryfikuje wewnętrzną poprawność struktury zbioru, 
w tym relacje topologiczne między obiektami oraz zgodność z regułami 
zdefiniowanymi w modelu danych;

−	 aktualność czasowa – opisuje zbieżność stanu informacji w bazie danych 
z rzeczywistym stanem zjawisk w świecie fizycznym w określonym mo-
mencie lub przedziale czasu.

Fundamenty dla tych rozwiązań położył amerykański komitet FGDC (komitet 
odpowiedzialny za standaryzację federalnych danych geograficznych w Stanach 
Zjednoczonych) poprzez opracowanie Content Standard for Digital Geospatial Meta- 
data w 1998 r., który wprowadził hierarchiczną strukturę opisu danych opartą na 
rodowodzie oraz precyzji pomiarowej (FGDC, 1998). Najważniejszą rolę odgrywa 
tu obecnie ISO (International Organization for Standardization – Międzynarodowa 
Organizacja Normalizacyjna, tworząca ogólnoświatowe normy techniczne) wraz 
z najnowszą normą ISO 19157-1:2023, która dąży do unifikacji modeli opisu jakości 
poprzez wprowadzenie ujednoliconych procedur walidacyjnych oraz raportowania 
wyników w formie cyfrowych metadanych (ISO, 2023). Ewolucja tych norm po-
kazuje wyraźne przesunięcie od prostych opisów tekstowych w stronę złożonych 
schematów XML (Extensible Markup Language – rozszerzalny język znaczników 
służący do strukturalnego zapisu danych) oraz JSON (JavaScript Object Notation 
– format wymiany danych), które mają ułatwiać automatyczną wymianę informa-
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cji między systemami klasy GIS, wciąż jednak pozostają one silnie zakorzenione 
w podejściu ilościowym.

W 1995 r. Salgé postulował już rozszerzenie tego instrumentarium o parametr 
dokładności semantycznej, który miał być miernikiem poprawności kategoryzacji 
obiektów względem ich rzeczywistego znaczenia (Salgé, 1995). Niemniej kon-
cepcje te nie zyskały powszechnej akceptacji w głównym nurcie standaryzacji 
i rzadko znajdują odzwierciedlenie w krajowych profilach metadanych, co wynika 
w znacznej mierze z wysokiego stopnia złożoności kwantyfikacji znaczenia oraz 
trudności w formalizacji uniwersalnych ontologii (Devillers i Jeansoulin, 2006). 
Instytucje normalizacyjne skoncentrowały swoje działania głównie na certyfikacji 
procesów produkcyjnych, co faworyzuje obiektywne parametry techniczne kosztem 
głębokiej ewaluacji semantycznej oraz utrwala model zorientowany wyłącznie 
na producenta informacji. Współczesne metadane pełnią więc rolę certyfikatu 
zgodności technologicznej i tarczy prawnej dla dostawców danych, często mar-
ginalizując realne potrzeby interpretacyjne użytkownika końcowego oraz gene-
rując lukę informacyjną, która uniemożliwia rzetelną ocenę przydatności danych 
do realizacji specyficznych celów analitycznych (Comber i in., 2006). Istniejące 
ramy raportowania skupiają się na tym, jak precyzyjnie wykonano pomiar, zamiast 
informować o tym, jak wiernie model oddaje naturę reprezentowanych zjawisk, 
co staje się szczególnie problematyczne przy integracji zasobów pochodzących 
z różnych instytucji.

Dominacja parametrów technicznych powoduje, że standardowe raporty ja-
kości ignorują niepewność wynikającą z niedoskonałości wiedzy oraz nieostrości 
pojęć geograficznych, co zostanie szczegółowo omówiono w kolejnej części pracy. 
Język norm technicznych operuje w koncepcji ostrych map binarnych i klasyfikacji 
rozłącznych, gdzie każdy obiekt jest uznawany albo za w pełni obecny, albo za 
całkowicie nieobecny. Pomimo wprowadzenia w normie ISO 19157-1:2023 więk-
szej swobody w definiowaniu elementów jakości opisowej, raportowanie wciąż 
opiera się na rutynowym wypełnianiu wymogów formalnych, które nie tłumaczy 
użytkownikowi praktycznych implikacji prezentowanych wartości (Vukalić i in., 
2024). Brak informacji o kontekście powstania danych oraz o koncepcjach leżących 
u podstaw modelowania sprawia, że użytkownik dysponuje zbiorem o wysokiej 
jakości geometrycznej, który może być jednak nieadekwatny pojęciowo do re-
alizowanego zadania (Chrisman, 1991; Comber i in., 2004). Ostatecznie obecny 
stan standaryzacji promuje ułudę pełnej kontroli nad jakością poprzez statystyczne 
wskaźniki dokładności, natomiast w rzeczywistości pomija on fundamentalne wy-
zwania epistemologiczne związane z komunikacją wiedzy o niepewnej i złożonej 
przestrzeni geograficznej.
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ISTOTA NIEPEWNOŚCI W DANYCH GEOINFORMACYJNYCH

Przed przystąpieniem do analizy typologii niepewności warto odróżnić dwa 
porządki pojęciowe, które w praktyce GIS często są ze sobą utożsamiane, czyli 
jakość danych (data quality) oraz niepewność informacji (information uncertainty).  
Jakość danych opisuje cechy produktu danych raportowane w metadanych, takie 
jak: dokładność, kompletność, spójność czy rodowód, a także odpowiada na py-
tanie o to, jak wykonano i jak technicznie opisano dane. Natomiast niepewność 
informacji odnosi się do stopnia uzasadnienia i wiarygodności twierdzeń, jakie 
formułujemy na podstawie danych, a więc do wątpliwości dotyczących znaczenia, 
adekwatności i konsekwencji wnioskowania. W tym sensie raportowana jakość jest 
tylko częścią niepewności, co oznacza, że może ją ograniczać, ale nie wyczerpuje 
jej źródeł, zwłaszcza gdy problem wynika z nieostrych definicji i konceptualizacji 
obiektów (Krukowski, 2021).

Niepewność informacji geograficznej można zdefiniować jako wątpliwość 
co do prawdziwości lub adekwatności informacji o świecie (Krukowski, 2021). 
Ma ona wiele przejawów i przyczyn, a klasycznie dzieli się ją na dwa główne ro-
dzaje w zależności od charakteru obiektu geograficznego (Fisher, 1999), czyli na 
niepewność dla obiektów dobrze zdefiniowanych oraz niepewność dla obiektów 
słabo zdefiniowanych.

Obiekty dobrze zdefiniowane (well-defined) to takie, których granice oraz 
kryteria klasyfikacji są względnie jednoznaczne, jak np. budynek, działka ewiden-
cyjna czy odcinek drogi w określonej klasie technicznej. W ich przypadku dominują 
źródła niepewności o charakterze klasycznym, obejmujące błędy pomiaru, georefe-
rencji i próbkowania, a więc odchylenia dające się opisywać probabilistycznie oraz 
poddawać estymacji w ramach teorii błędów. Tak rozumiana niepewność przekłada 
się przede wszystkim na dokładność pozycyjną i atrybutową oraz na ocenę stabil-
ności wyników analiz poprzez propagację niepewności. W tej klasie problemów 
metadane jakości, jeśli są poprawnie prowadzone, faktycznie umożliwiają użyt-
kownikowi przejście od danych do wiarygodności wnioskowania (Fisher, 2000).

Inaczej jest w przypadku obiektów słabo zdefiniowanych (poor-defined), 
czyli takich, których granice są rozmyte, a kryteria wydzielenia mają charakter 
kontekstowy, gradacyjny albo zależą od przyjętego schematu pojęciowego. Przy-
kładami mogą być mokradła, tereny zabudowane, strefy przejściowe ekosystemów 
czy niektóre jednostki geologiczne. Dla tej klasy obiektów kluczowe stają się dwa 
rodzaje niepewności, czyli nieostrość oraz niejednoznaczność. Nieostrość doty-
czy sytuacji, w której nie da się wskazać ostrej granicy przynależności, ponieważ 
obiekt zanika w otoczeniu, a jego zasięg ma charakter strefowy. W konsekwencji 
przynależność do klasy jest stopniowalna. Niejednoznaczność natomiast oznacza, 
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że ta sama sytuacja może zostać poprawnie opisana na więcej niż jeden sposób, 
ponieważ istnieją konkurencyjne lub równoległe interpretacje, takie jak różne 
definicje klas czy różne kryteria instytucjonalne.

Dobrym przykładem geograficznym jest rozróżnienie miasto–wieś, które staje 
się problematyczne w strefach suburbanizacji. Płynne zmiany gęstości zabudowy 
i struktury użytkowania terenu sprawiają, że wyznaczenie jednej ostrej linii de-
markacyjnej jest aktem arbitralnym. Jak wskazują Smith i Mark (2003) w swojej 
analizie ontologii form terenu, nawet obiekty o pozornie oczywistej fizyczności, 
takie jak góry, rzadko posiadają granice typu bona fide wynikające z realnych 
nieciągłości w świecie. Większość obiektów geograficznych to konstrukty typu 
fiat, których granice są wyznaczane umownie, co czyni je nieostrymi, niezależnie 
od precyzji pomiaru. W konsekwencji przynależność do klasy obiektów pozostaje 
stopniowalna, a zasięg obiektu ma charakter rozmyty i  strefowy (Krukowski, 
2025). Dodatkowym czynnikiem pogłębiającym nieostrość i niejednoznaczność 
obiektów geograficznych jest zmienność czasowa i przestrzenna, która podważa 
założenie o ich stabilności ontologicznej. W wielu przypadkach granice obiektów 
nie są jedynie rozmyte, lecz także dynamiczne, ulegają bowiem okresowym lub 
długoterminowym przekształceniom. Dotyczy to m.in. sezonowych zmian zasięgu 
jezior i mokradeł, fluktuacji rozmieszczenia zwierząt związanych z migracjami, 
a  także przekształceń stref klimatycznych i ekosystemów w warunkach zmian 
klimatu. Zmienność ta utrudnia jednoznaczne definiowanie i delimitację obiek-
tów, ponieważ nawet precyzyjnie sformułowane kryteria klasyfikacyjne mogą 
być spełnione tylko w określonych momentach czasu lub w sposób nieciągły. 
W konsekwencji niepewność informacji nie wynika wyłącznie z nieostrości pojęć, 
lecz również z czasowej nietrwałości samych obiektów, co dodatkowo komplikuje 
proces wnioskowania na podstawie danych przestrzennych.

W obrębie niejednoznaczności wyróżnia się dwa uściślenia, które pomagają 
rozdzielić niezgodność oraz nieokreśloność. Niezgodność zachodzi wtedy, gdy 
obiekt jest względnie ostry, ale w zależności od przyjętego systemu klasyfikacyj-
nego może zostać przypisany do różnych klas, przy czym każda z tych decyzji jest 
spójna w ramach własnej definicji. Przykładem może być klasyfikacja form terenu, 
gdzie ten sam obiekt może zostać nazwany górą lub wzgórzem w zależności od 
tego, czy przyjęty próg wysokości względnej wynosi np. 200 czy 300 metrów. 
Nieokreśloność (niekiedy określana jako niespecyficzność) dotyczy zaś samej 
definicji klasy, ponieważ jeśli jest ona ogólna, elastyczna lub mocno konteksto-
wa, to przypisanie obiektu pozostaje interpretacyjne. Przykładowo kiedy termin 
teren podmokły nie precyzuje dokładnego stopnia uwilgotnienia ani czasu jego 
utrzymywania, decyzja o zaklasyfikowaniu danego obszaru staje się subiektywna. 
W konsekwencji ta sama informacja przestrzenna może być formalnie poprawna, 
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a jednak epistemicznie niepewna, gdyż problem leży nie w pomiarze, tylko w po-
jęciach i decyzjach klasyfikacyjnych (Krukowski, 2021).

1. Formalizacja

W GIScience wypracowano szereg formalnych ujęć niepewności, które nie 
redukują jej do błędu pomiaru. Kluczowe znaczenie ma tu rozróżnienie między 
niedokładnością a nieostrością, gdzie pierwsza dotyczy odchylenia danych od re-
ferencji (błąd), a druga niejednoznacznych kryteriów klasyfikacji oraz przypadków 
granicznych wynikających z  języka i konceptualizacji świata. W konsekwencji 
modelowanie nieostrości jest próbą zoperacjonalizowania tego, co w opisie geo-
graficznym jest z natury stopniowalne i nieostre.

Najbardziej klasycznym narzędziem formalizacji nieostrości są zbiory rozmyte 
(fuzzy sets), w których przynależność do klasy ma charakter stopniowalny i jest 
opisywana funkcją przynależności (Zadeh, 1965). Zamiast ostrej granicy należy / 
nie należy, otrzymujemy kontinuum stopni bardziej–mniej, co pozwala modelować 
obszary przejściowe bez udawania, że są jednoznaczne. Komplementarne podej-
ście stanowią zbiory przybliżone (rough sets), w których obiekt opisuje się przez 
przybliżenie dolne, obejmujące elementy pewne, oraz przybliżenie górne, obej-
mujące elementy możliwe, dzięki czemu da się wprost zapisać strefę niepewności 
przynależności (Pawlak, 1982). Tę logikę można traktować jako formalne ujęcie 
sytuacji, w której granica klasy jest niepewna, ale nie musi być probabilistyczna.

Równolegle rozwijają się ujęcia filozoficzne porządkujące źródło nieostrości. 
Kluczowe jest tu rozróżnienie między nieostrością de re (dotyczącą fizycznej natury 
rzeczy) a nieostrością de dicto (wynikającą z niedoskonałości języka i definicji). 
Nieostrość de re obserwujemy tam, gdzie same obiekty fizyczne pozbawione są wy-
raźnych krawędzi. Klasycznym przykładem jest linia brzegowa, która ze względu 
na dynamikę pływów i erozji stanowi obiekt o nieostrości fizycznej, a jej reprezen-
tacja jako ostrej kreski w bazie danych jest jedynie kognitywnym uproszczeniem. 
Z kolei nieostrość de dicto pojawia się w procesach mapowania, gdy próbujemy 
narzucić nazwy (etykiety) na ciągłą rzeczywistość (Krukowski, 2025). Z tym wiąże 
się rozróżnienie granic bona fide (opartych na fizycznych nieciągłościach) i fiat 
(ustanowionych umownie).

2. Wymiar kognitywny i językowy

Istotnym źródłem niepewności jest fakt, że pojęcia geograficzne są zakorze-
nione w języku naturalnym i kategoryzacji potocznej. Dyskretyzowanie świata do 
struktur bazodanowych wymusza arbitralne progi, co generuje przypadki granicz-
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ne. Można się tu odwołać do paradoksu stosu (Sorites), aby pokazać, że nie da się 
precyzyjnie wyznaczyć momentu, w którym pojedyncze drzewa stają się lasem 
(Krukowski, 2021). Z punktu widzenia semantyki nie jest to błąd procesu, tylko 
strukturalna cecha opisu świata. W praktyce oznacza to, że twórca danych może 
spełnić kryteria dokładności geometrycznej, a mimo to pozostawić użytkownika 
z ryzykiem interpretacyjnym. Niepewność nie dotyczy wtedy tego, gdzie coś jest, 
lecz czym coś jest i według jakich kryteriów zostało wydzielone. Ten wymiar, 
obejmujący nieostrość poznawczą i nieostrość konceptualizacji, powinien być 
traktowany jako integralny element jakości danych.

ROZSZERZENIE KONCEPCJI JAKOŚCI DANYCH – INTEGRACJA 
NIEPEWNOŚCI I NIEOSTROŚCI

Dla rozwiązania zidentyfikowanego problemu zasadne wydaje się poszerzenie 
ram pojęciowych jakości danych geograficznych w taki sposób, aby włączały one 
niepewność w najszerszym sensie, obejmującym nieostrość i niejednoznaczność 
obok tradycyjnych miar dokładności. Taka propozycja ma charakter metodologicz-
no-epistemologiczny, co oznacza, że chodzi nie tylko o nowe techniki pomiarowe, 
ale przede wszystkim o zmianę sposobu myślenia o jakości danych

W pierwszej kolejności warto rozważyć modyfikację standardów metadanych 
tak, aby uwzględniały informacje o konceptualizacji danych. Metadane mogłyby 
opisywać znaczenie i definicje kategorii użytych w zbiorze danych oraz kontekst ich 
tworzenia zamiast jedynie podawać dokładność geometryczną. Korzystne wydaje 
się dodanie do dokumentacji danych elementów, które obejmują:

1.	Kontekst organizacyjno-ekspercki – opis celów powstania danych oraz 
założeń przyjętych przy definiowaniu obiektów. Pozwala ujawnić epis-
temologiczne uwarunkowania informacji, np. fakt, że dane powstały na 
potrzeby inwentaryzacji gruntów rolnych według określonych wytycznych 
urzędowych z lat 90. XX w., co bezpośrednio wpływa na sposób klasyfi-
kacji.

2.	Kontekst polityki i zamówienia – informacje o uwarunkowaniach powsta-
nia danych, np. „klasa ‘bagno’ zdefiniowana na potrzeby ochrony mokra-
deł według kryteriów hydrologicznych”. Tło takie wyjaśnia, dlaczego dane 
przybrały taką formę, oraz pozwala zrozumieć różnice między pozornie 
podobnymi zbiorami.

3.	Ontologia i definicje obiektów – formalny lub opisowy słownik pojęć 
użytych w danych, zawierający definicje każdej klasy tematycznej i ewen-
tualnie różnice względem innych znanych klasyfikacji. Taki opis (np. 
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odwołanie do ontologii dziedzinowej czy standardu definicji) pozwoli 
użytkownikowi ocenić, na ile pojęcia w danych odpowiadają jego wła-
snemu rozumieniu tych pojęć lub innym źródłom danych. W praktyce 
może to przyjąć formę rozszerzonego słownika metadanych lub załącznika 
z definicjami.

4.	Informacja o doświadczeniach użytkowników – jeżeli dostępne są dane 
o wcześniejszym zastosowaniu danego zestawu danych (np. publikacje, 
raporty, w których go użyto), warto w metadanych zamieścić uwagi do-
tyczące zastosowań. Comber i in. (2004) sugerują, że metadane mogłyby 
zawierać relacje między jakością danych a niepewnością zaobserwowaną 
w konkretnych zastosowaniach, np. „analiza zasięgu bagien z użyciem 
tych danych wykazała rozbieżności na glebach torfowych – użytkowni-
cy zgłaszali, że klasa ‘bagno’ pomija obszary bez wody stojącej”. Takie 
informacje pełniłyby rolę wskazówek dla kolejnych użytkowników co do 
ograniczeń danych.

Rozszerzenie metadanych o powyższe elementy zbudowałoby pomost po-
między wiedzą producenta danych a potrzebami ich użytkowników. W literaturze 
podkreśla się konieczność wzmocnienia powiązań między raportowaniem jakości 
a oceną niepewności (Comber i in., 2004; Fisher, 2003). Proponowane rozwiązania 
wpisują się w ten nurt poprzez wyposażenie metadanych w wiedzę konceptualną, 
dzięki czemu użytkownik uzyskuje wiedzę nie tylko o dokładności technicznej, 
lecz również o rzeczywistym znaczeniu informacji, co ułatwia ocenę przydatności 
danych do konkretnego celu.

W drugiej kolejności za celowe uznaje się opracowanie spójnej typologii 
niepewności informacji geograficznej, która umożliwi badaczom i praktykom 
posługiwanie się wspólnym językiem przy opisie jakości danych. Ujednolicona 
ontologia pojęć mogłaby wyeliminować chaos terminologiczny wokół takich 
terminów jak: „niedoskonałość”, „niejednoznaczność”, „niespecyficzność” czy 
„nieokreśloność” i wiele innych. Dążenie do wyraźnego rozgraniczenia rodza-
jów niepewności pozwala na powiązanie ich z odpowiednimi metodami postę-
powania. Zaproponowano już pewne porządki, np. klasyfikacje Klira i Yuana 
(1995) czy Fishera (1999) dzielące niepewność według źródeł (błąd, niejasność, 
brak danych, konflikt informacji itp.). Krukowski (2021) zaproponował nową 
typologię niedoskonałości informacji przestrzennej, opartą o analizę filozoficz-
ną i  istniejące koncepcje. Dążenie do wyraźnego rozgraniczenia rodzajów nie-
pewności pozwala na powiązanie ich z odpowiednimi metodami postępowania. 
W praktyce mogłoby to przybrać formę tabelarycznego schematu zawierającego 
rodzaj niepewności, jego opis oraz przykładową miara lub technikę modelowania,  
co prezentuje tab. 1.
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Tab. 1. Przykładowe typy niepewności informacji geograficznej i  możliwe podejścia do ich 
kwantyfikacji (opracowanie własne na podstawie: Fisher, 1999; Krukowski, 2021)
Tab. 1. Example types of uncertainty in geographic information and possible approaches to their quantification 
(author’s own elaboration based on Fisher, 1999; Krukowski, 2021)

Rodzaj niepewności Opis Przykładowe ujęcie/miara

Błąd

Różnica między danymi a rzeczywisto-
ścią wynikająca z ograniczeń pomiaru 
lub modeli. Dotyczy obiektów „dobrze 
zdefiniowanych”

Statystyczne miary dokładności (RMSE, 
odchylenie standardowe, przedziały 
ufności)

Niekompletność Braki danych lub niepełne pokrycie obiek-
tów danej kategorii

Wskaźnik kompletności (odsetek braku-
jących obiektów) zgodnie ze standardem 
(ISO 19157)

Nieostrość 
(rozmytość)

Rozmyte granice obiektu lub stopniowalna 
przynależność do klasy. Typowe dla obiek-
tów słabo zdefiniowanych

Zbiory rozmyte i funkcja przynależności 
w domenie od 0 do 1 dla każdego punktu 
przestrzeni (np. model rozmytych granic 
zasięgu)

Niejednoznaczność
Wieloznaczność przypisania obiektu do 
klas oraz różne możliwe interpretacje tej 
samej sytuacji

Analiza w oparciu o scenariusze lub teoria 
dowodów – przydzielenie wag prawdopo-
dobieństwa do alternatywnych klasyfikacji 
obiektu (metoda Dempstera–Shafera)

Niezgodność
Sprzeczność między dwiema klasyfikacja-
mi, gdzie obiekt spełnia kryteria więcej niż 
jednej klasy w różnych systemach

Macierz zgodności między dwiema klasy-
fikacjami; miara podobieństwa semantycz-
nego klas (np. współczynnik kappa lub 
F-score)

Nieokreśloność/
niespecyficzność

Sytuacja, w której zbyt ogólna definicja 
klasy powoduje niepewność przypisania 
obiektu do konkretnej kategorii

Dokumentacja zakresu interpretacji lub 
zastosowanie zbiorów przybliżonych, 
podających granice pewnego przypisania

Nieprzejrzystość 
(black-box)

Brak wiedzy o procesie powstania danych, 
wynikający np. z użycia niejawnego mode-
lu sztucznej inteligencji generującego dane

Informacja o rodowodzie i metodzie 
uzyskania danych oraz wskaźniki zaufania 
generowane przez model

Zestawienie zamieszczone w tab. 1 stanowi jedynie ilustrację postulowanych 
zmian. Istotne wydaje się, aby w ramach oceny jakości danych dążyć do jawnego 
raportowania tych kategorii niepewności, które dotąd były pomijane. Użytkownik 
mógłby dowiedzieć się nie tylko o wartościach błędów lokalizacji, lecz także o spe-
cyfice definicji klas, co pozwoliłoby na uzyskanie pełniejszego obrazu ograniczeń 
informacji. Przykładem może być sytuacja, w której definicja klasy ‘las’ opiera się 
wyłącznie o kryterium powierzchni z koroną drzew, co oznacza, że młode zalesienia 
mogły zostać nieujęte w zbiorze, co stanowi specyficzny rodzaj nieokreśloności 
definicji. Taki opis jakości, łączący aspekt techniczny z konceptualnym, daje peł-
niejszy obraz ograniczeń informacji.

W trzeciej kolejności proponowane podejście przewiduje wdrożenie praktycz-
nych metod uwzględniania niepewności w analizach i prezentacji danych. Same 
metadane to nie wszystko – niepewność trzeba komunikować i wykorzystywać. 
W geoinformacji istnieje nurt badań nad wizualizacją niepewności (Kinkeldey 
i in., 2014; MacEachren i in., 2005), postulujący używanie zmiennych wizualnych 
i sonifikacji (np. przezroczystości, rozmycia lub dźwięku) do przedstawiania nie-
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pewnych informacji na mapach w różnych systemach informacyjnych (np. mapy 
pokazujące zarówno wartość atrybutu, jak i niepewność co do tej wartości). Inne 
możliwe podejścia obejmują analizy scenariuszowe, polegające na generowaniu 
wielu realizacji danych i sprawdzaniu stabilności uzyskiwanych wyników (Agumya 
i Hunter, 2002; Heuvelink, 1998). Z kolei Comber i in. (2006) sugerują integrację 
narzędzi GIS z mechanizmami wnioskowania z niepewną wiedzą, by wspomagać 
użytkownika w podejmowaniu decyzji z uwzględnieniem niepewności. Z per-
spektywy metodologicznej oznacza to przesunięcie paradygmatu od założenia 
o jednoznaczności wyników do podejścia, w którym wynik posiada określony 
rozkład wiarygodności, a dane niosą za sobą przedział możliwych interpretacji. 
Wychodzimy zatem od założenia, że „mamy dokładne dane, więc wynik jest jed-
noznaczny”, do podejścia, że „wynik ma pewien rozkład wiarygodności, a dane 
niosą przedział możliwych interpretacji”.

PRZYKŁAD PROBLEMU NIEPEWNOŚCI INFORMACJI 
GEOGRAFICZNEJ

Problem niepewności semantycznej, rozumianej jako brak jednoznaczności 
w definiowaniu kategorii obiektów geograficznych, znajduje odzwierciedlenie 
w badaniach nad dynamiką zmian pokrycia terenu. Za jedną z głównych przyczyn 
błędnych interpretacji danych przestrzennych uznaje się zjawisko ukrywania się 
istotnych zmian definicyjnych pod tymi samymi etykietami klas. W kartografii 
i geoinformacji obok niepewności pomiarowej istnieje fundamentalna niepewność 
pojęciowa, która wynika z prób binarnego opisu zjawisk o charakterze ciągłym.

Klasycznym przykładem ilustrującym to zjawisko jest analiza przeprowadzona 
przez Fullera i współpracowników dotycząca brytyjskich map pokrycia terenu z lat 
1990 i 2000 (Fuller i in., 1994, 2002). Wykazano w niej, że zmiana konceptuali-
zacji klasy ‘bagno’ doprowadziła do pozornego i ogromnego przyrostu tego typu 
obszarów. W wersji mapy z 1990 r. stosowano kryteria florystyczno-hydrologiczne, 
oparte na obecności wody i roślinności bagiennej, co skutkowało sklasyfikowa-
niem zaledwie 12 pikseli zdjęcia satelitarnego jako bagniste. Dziesięć lat później 
przyjęto definicję glebową opartą wyłącznie na głębokości torfu przekraczającej 
0,5 metra. W efekcie, bez fizycznej zmiany w terenie, powierzchnia bagien na 
mapie wzrosła z obszaru mniejszego niż jeden hektar do wartości 75 kilometrów 
kwadratowych (Fuller i in., 1994, 2002). Jak zauważają Comber i in. (2006), bez 
dostępu do metadanych semantycznych użytkownik jest skazany na błędny wnio-
sek o radykalnej regeneracji ekosystemu, podczas gdy w rzeczywistości wystąpił 
jedynie akt zmiany definicji.
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Innym, ale podobnym przykładem jest klasyfikacja terenu oraz określenie za-
sięgu przestrzennego lasu, który zmienia się radykalnie w zależności od przyjętego 
progu gęstości drzew. W szerokim rozumieniu klasa stanowi zbiór obiektów o jed-
nakowych właściwościach, przy czym w procesie klasyfikacji często bezpodstawnie 
przyjmuje się, że obiekt posiada wartości typowe dla elementów danej kategorii 
i stanowi element wzorcowy. W kognitywizmie taki idealny wzorzec określa się 
mianem prototypu (Tabakowska, 2001), a jego istnienie powoduje efekt prototypu 
dodatkowo komplikujący proces kategoryzacji (Rosch, 1978). Nie wszystkie obiekty 
w danej klasie mają jednakowe wartości cech powszechnie akceptowane, co sprawia, 
że niektóre z nich znajdują się na skraju uznania za elementy zbioru. Sytuacja ta 
opiera się na domyślnym rozumowaniu poprzez porównanie obiektu klasyfikowanego 
z przyjętym wcześniej wzorcem, co niesie za sobą niepewność wyniku.

W polskich uwarunkowaniach las występuje w różnych znaczeniach, w za-
leżności od celu definicji. Według ustawy o lasach z 1991 r. „las to grunt o zwartej 
powierzchni co najmniej 10 arów, pokryty roślinnością leśną lub teren przejściowo 
tej roślinności pozbawiony” (Ustawa, 1991). Z kolei rozporządzenie dotyczące 
bazy danych obiektów topograficznych BDOT10k określa las jako „teren leśny 
lub zadrzewiony, który reprezentuje tereny o zwartym zadrzewieniu, w tym lasy, 
zadrzewienia, zagajniki, parki oraz inne tereny porośnięte drzewami”, wprowa-
dzając jednocześnie wymóg minimalnej szerokości obiektu wynoszący 20 metrów, 
długości 50 metrów, a minimalna powierzchnia to 2000 metrów kwadratowych 
(Rozporządzenie, 2021). Równolegle funkcjonują międzynarodowe standardy FAO 
(Food and Agriculture Organization of the United Nations), według których „lasem 
jest teren o powierzchni powyżej pół hektara, z drzewami o wysokości co najmniej 
5 metrów i zwarciu koron przekraczającym 10%” (FAO, 2020). W tych definicjach 
nieostre pozostaje zwłaszcza kryterium zwartości lasu, co generuje niejednoznacz-
ność przy próbach łączenia lub porównywania zbiorów danych pochodzących 
z różnych państw (Lund, 2018). Interesujące porównanie stanowi przedwojenna 
instrukcja Wojskowego Instytutu Geograficznego z 1925 r. wskazująca granicę 
lasu: „(…) tam, gdzie las stopniowo przechodzi w bardzo rzadki, należy przyjąć 
granicę jego na tym miejscu, gdzie przestaje on chronić przed obserwacją z góry” 
(WIG, 1925), co podkreśla orientację definicji na cele militarne.

Problemem wynikającym z istnienia nieostrości i niejednoznaczności jest 
wyciąganie bezkrytycznych wniosków na podstawie analiz przestrzennych, igno-
rując przy tym fakt, że funkcjonalność systemów informacyjnych zależy od różnic 
w klasyfikacjach stosowanych podczas gromadzenia i wykorzystywania danych. 
Zgodnie z opracowaniem Franka (2001) niepewność w klasyfikacji wynika nie 
tylko z błędu pomiaru, lecz przede wszystkim z wyboru cech istotnych, wyboru 
wartości progowych oraz błędów położenia granicy w przestrzeni i czasie. Wnioski 
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te wskazują, że dokumentacja jakości nie może ograniczać się do precyzji geome-
trycznej, ponieważ to niepewność co do znaczenia pojęcia decyduje o końcowej 
wiarygodności analiz geograficznych.

PODSUMOWANIe

Analiza problematyki jakości w systemach informacji przestrzennej prowa-
dzi do wniosku, że dominujący dotychczas paradygmat, oparty na tzw. wielkiej 
piątce parametrów technicznych, obejmującej dokładność pozycyjną, dokładność 
tematyczną, spójność logiczną, kompletność oraz rodowód, jest niewystarczający 
w obliczu rosnącej złożoności współczesnych analiz. Tradycyjne metadane, choć 
precyzyjnie raportują błędy pomiarowe czy rodowód danych, milczą na temat naj-
ważniejszego źródła niepewności, jakim jest rozbieżność między konceptualizacją 
rzeczywistości przez producenta a potrzebami i wiedzą użytkownika. Skupienie się 
wyłącznie na mierzalnych parametrach pomija wymiar niepewności epistemicznej, 
związanej z tym, co i jak dane reprezentują. W geoinformacji, będącej pomo-
stem między światem realnym a jego modelami, ignorowanie tej sfery prowadzi 
do nadmiernej pewności siebie w interpretacji wyników, co można podsumować 
stwierdzeniem, że wiemy, iż nic nie wiemy dokładnie.

Współczesne kierunki standaryzacji, reprezentowane przez normę ISO 19157-1:
2023 (ISO, 2023), zdają się dostrzegać tę lukę. Nowy standard wprowadza większą 
elastyczność, definiując proces tworzenia dodatkowych, dziedzinowych 
komponentów jakości, co stanowi szansę na formalne włączenie do raportowania 
aspektów semantycznych i ontologicznych. Zamiast ograniczać się do statystycznej 
poprawności, systemy metadanych mogą być uzupełniane o sformalizowane defi-
nicje pojęć, np. w formie ontologii, co pozwala na realne wdrożenie paradygmatu 
adekwatności do zamierzonego celu (fitness for purpose). Dzięki temu ocena 
przydatności danych przestaje być subiektywnym domysłem użytkownika, a staje się 
procesem opartym na porównywaniu sformalizowanych uniwersów dyskursu 
(Vukalić i in., 2024). Prace nad uaktualnieniem standardów zmierzają ku lepszej 
interoperacyjności, wprowadzając procedury opisu spójności konceptualnej, które 
pozwalają systemom ontologicznym wykrywać, że np. klasa ‘bagno’ w zbiorze A
nie jest tożsama z klasą ‘bagno’ w zbiorze B.

Kwestia ta staje się jeszcze bardziej paląca w dobie dynamicznego rozwoju 
geoprzestrzennej sztucznej inteligencji (GeoAI). Współczesne modele uczenia 
maszynowego i sztucznej inteligencji obiecują automatyzację procesów klasyfi-
kacji i ekstrakcji obiektów, ale kwestia ta staje się szczególnie istotna w dobie ich 
dynamicznego rozwoju (Mai i in., 2025). Masowe wykorzystanie modeli głębo-
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kiego uczenia do klasyfikacji pokrycia terenu wprowadza nowy rodzaj niepewno-
ści, określany jako nieprzejrzystość czarnej skrzynki (black-box uncertainty; zob. 
Hüllermeier i Waegeman, 2021). Modele te potrafią osiągać wysoką dokładność 
geometryczną (Ali, 2025), niosą jednak za sobą ryzyko ukrycia niepewności seman-
tycznej pod wysokimi wskaźnikami ufności statystycznej, podczas gdy mechanizm 
ich decyzji klasyfikacyjnych oraz granice semantyczne często pozostają niejawne.

W tym kontekście problem nieprzejrzystości modeli łączy się bezpośrednio 
z wyzwaniem, które Goodchild i Li (2021) określają jako specyfikę replikacji 
w przestrzeni. W przeciwieństwie do nauk eksperymentalnych, gdzie replikacja 
w czasie jest standardem, w geoinformacji mamy do czynienia z wysoką hetero-
genicznością przestrzenną. Oznacza to, że modele trenowane w jednym regionie 
mogą generować wyniki obarczone głęboką niepewnością kontekstową przy próbie 
ich transferu na inne obszary. Bez kwantyfikacji tej niepewności oraz ujawnienia 
„logiki pojęciowej” algorytmu wysoki wskaźnik jakości technicznej może jedynie 
maskować fundamentalne błędy semantyczne i uprzedzenia geograficzne (Mai i in., 
2025). Integracja tradycyjnych miar statystycznych z metodami uczenia maszy-
nowego świadomego niepewności (Valle i in., 2023) oraz wykorzystanie metod 
wyjaśnialnej sztucznej inteligencji (XAI; zob. Dahal i Lombardo, 2023) stanowią 
jedyną drogę do budowania zaufania w erze zautomatyzowanej analizy.

Z metodologicznego punktu widzenia konieczna jest zmiana postrzegania  
GIScience – nie tylko jako zbioru technik, lecz także jako dyscypliny epistemo-
logicznej. Taka perspektywa integruje techniczne aspekty jakości z refleksją nad 
naturą informacji geograficznej. Świadomość istnienia niepewności informacji, 
a zwłaszcza jej nieostrości, powinna być powszechna, aby uniknąć częstych nadin-
terpretacji danych przestrzennych. Konieczne jest budowanie kultury geoinfor-
macyjnej, w której pytanie o granice wiarygodności danych będzie rutynowe. 
Powinniśmy pytać nie tylko o to, jaka jest dokładność, lecz także o to, na ile ufamy 
definicjom i założeniom stojącym za danymi.

Podsumowując, jakość danych przestrzennych to problem wielowymiarowy, 
w którym wymiar niepewności konceptualnej jest równie istotny jak dokładność 
geometryczna. Rozwiązaniem jest holistyczne podejście – rozszerzenie metada-
nych o kontekst semantyczny, transparentność algorytmiczna GeoAI oraz ewolucja 
programów kształcenia geoinformacyjnego i geograficznego w stronę krytycznego 
myślenia o danych. Tylko wtedy, gdy producenci danych poddadzą rewizji swoje 
podejście do jakości, uwzględniając nowoczesne modele niepewności, standardy 
staną się kompletne i użyteczne. W geoinformacji precyzja pomiaru musi iść w pa-
rze z refleksją poznawczą, aby mapa i model wiernie służyły zrozumieniu świata, 
a nie ułudzie pewności.
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