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ABSTRACT: In the paper it is shown that time necessary to solve the NP-hard Resource-
Constrained Project Scheduling Problem (RCPSP) could be considerably reduced using a low-cost
multicomputer. We consider an extension of the problem when resources are only partially available
and a deadline is given but the cost of the project should be minimized. In such a case finding an
acceptable solution (optimal or even semi-optimal) is computationally very hard. To reduce this
complexity a distributed processing model of a metaheuristic algorithm, previously adapted by us
for working with human resources and the CCPM method, was developed. Then, a new
implementation of the model on a low-cost multicomputer built from PCs connected through a local
network was designed and compared with regular implementation of the model on a cluster.
Furthermore, to examine communication costs, an implementation of the model on a single multi-
core PC was tested, too. The comparative studies proved that the implementation is as efficient as
on more expensive cluster. Moreover, it has balanced load and scales well.

1. INTRODUCTION

Resource allocation, called the Resource-Constrained Project Scheduling Problem
(RCPSP), attempts to reschedule project tasks efficiently using limited renewable
resources minimising the maximal completion time of all activities [3 - 5]. A single project
consists of m tasks which are precedence-related by finish-start relationships with zero
time lags. The relationship means that all predecessors have to be finished before a task
can be started. To be processed, each task requires a human resource (HR). The
resources are limited to one unit and therefore have to perform different tasks
sequentially. RCPSP is an NP- hard problem. In most cases, branch-and-bound is the only
exact method which allows the generation of optimal solutions for scheduling rather small
projects (usually containing less than 60 tasks and not highly constrained) within
acceptable computational effort [1, 5]. Results of the Hartmann and Kolisch [8]
investigation showed that the best performing heuristics were the GA of Hartmann [7]
and the SA procedure of Bouleimen and Lecocq [2]. Their latest research revealed that
the forward-backward improvement technique applied to X-pass methods, metaheuristics
or other approaches produces good results and that the most popular metaheuristics
were GAs and TS methods.
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In our previous works, cost-efficient project management based on a critical chain
(CCPM) was investigated. The CCPM is one of the newest scheduling techniques
[19]. It was used to solve a variant of the RCPSP. A goal of the management was to
allocate resources in order to minimise the project total cost and complete it in a given
time. A sequential metaheuristic from Deniziak [6] was adapted to take into account
specific features of human resources participating in a project schedule. The research
showed high efficiency of this adaptation for resource allocation [12]. An extension of the
problem, where HRs are only partially available since they may be involved in many
projects, was also investigated [14]. The research proved that the adaptation is efficient
but the minimization was still time consuming and would require accelerating to cope with
bigger real-life problems

Our latest research showed that the algorithm has got an inherent parallelism. Hence,
a distributed processing model for solving the extension of the RCPSP was developed and
tested on a regular PCs [13]. It gave a time of scheduling even 10 times smaller than the
sequential processing. Therefore, in this research we present a new implementation of
the model, on a low-cost multicomputer built from PCs connected through a local
network Furthermore, we compare it with regular implementation of the model on a cluster
and show that it may be just as efficient, but not so expensive what might limit its practical
value.

The next section of the paper contains a brief overview of related work. Motivation
for the research is given in section 3. An implementation of the distributed processing
model for the algorithm is presented in section 4. Evaluation of the implementation in both
distributed and parallel environments is given in section 5. The paper ends with
conclusions.

2. RELATED WORK

Researchers studied the problem and suggested their own solutions which can be
divided into exact procedures and heuristics. Branch and bound methods are an
example of the exact procedures (see e.g. [3], [4]). In [11] another method, a tree search
algorithm, was presented. It is based on a new mathematical formulation that uses
lower bounds and dominance criteria. An in-depth study of the performance of the
latest RCPSP heuristics can be found in [10]. Heuristics described by the authors
include X-pass methods, also known as priority rule-based heuristics, classical
metaheuristics, such as Genetic Algorithms (GAs), Tabu search (TS), Simulated
annealing (SA), and Ant Colony Optimisation (ACO). Non-standard metaheuristics and
other methods were presented as well. The former consist of local search and population-
based approaches, which have been proposed to solve the RCPSP. The authors
investigated a heuristic which applies forward-backward and backward-forward
improvement passes. For detailed description of the heuristic schedule generation
schemes, priority rules, and representations refer to [8].

The effectiveness of scheduling methods can be further improved using parallel
processing. Some implementations of parallel TS [15 17] and SA [18] algorithms for
different combinatorial problems have already been proposed. The most common one is
based on dividing (partitioning) the problem such that several partitions could be run in
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parallel and then merged. Parallelism in GAs can be achieved at the level of single
individuals, the fitness functions or independent runs [21, 22]. All of the parallel
approaches fall into three categories: the first uses a global model, the second uses a
coarse-grained (island) model and the third uses a fine-grained (grid, cellular) model
[20]. In the global model, a master process manages the whole population by assigning
subsets of individuals to slave processes. In the island model a population is divided into
sub-populations that are evolved separately. During evolution, some individuals are
exchanged periodically between them. In the grid model a population is represented as a
network of interconnected individuals where only neighbors may interact. It was
observed that parallel GAs (PGASs) usually provide better efficiency than sequential ones
[20]. The same parallel approaches can be applied for ACO. In [23] five strategies of
parallel processing are described, which are mainly based on the well-known master/slave
approach [24].

3. MOTIVATION

The sequential algorithms are time consuming, what considerably limits their
usefulness. Speeding up the calculations would be desirable for project managers because
it may allow managing complex projects in acceptable time. Parallel models offer the
advantage of reducing the execution time and give an opportunity to solve new problems
which have been unreachable in case of sequential models. The most popular parallel
strategies are based on master/slave approach [24] with centralized management of
distributing tasks and gathering results. The master can efficiently coordinate the system,
avoiding potential conflicts before they take place, and react on failures of the slaves.
However, global gathering and re-broadcasting of large configurations can be time-
consuming. Costs of synchronization between slaves have to be considered, also. Some
slaves may have to wait for completing other tasks, which is necessary to retain data
integrity. More-over, the master is the weakest point of the system. The system will slow
down if the master cannot handle incoming requests. If the master crashes, the whole
system will also crash. Another problem is load imbalance caused by unpredictable
processing time of each slave. Summarizing, the gain coming from parallelization of the
algorithm may be significantly reduced.

From our research it also follows that parallel processing could reduce efficiently the
amount of the time consumed by the metaheuristic algorithm [13]. Usually, such reduction
requires a use of a cluster and hence is expensive what may limit its popularity. The key
idea to overcome this inconvenience is to make use of multi-core architecture of low-cost
PCs, instead of the cluster. Such a multi-multi computer is cheap, easily assembled
and might be very useful for practical reasons. However, it should be proven that the
implementation is as efficient as on the cluster, and that it has balanced load and scales
well.

4. OPTIMIZATION ALGORITHM

The metaheuristic algorithm starts with the initial point and searches for the cheapest
solution satisfying given time constraints. The initial schedule is generated by greedy
procedures that try to find a resource for each task basing upon to the smallest increase of
the project duration or the project total cost. It is a suboptimal solution which the
algorithm tries to enhance. In each pass of the iterative process, the current project
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schedule is being modified in order to get closer to the optimum. In the first add stage a
new HR which is not in the schedule is attached to it. Tasks of HRs which have already
been engaged in the schedule are moved to the HR but only when a positive gain is
achieved. Afterwards, if there are HRs without allocated tasks, they are removed from the
schedule. The best schedule goes to the next stage

and the proceeding is repeated until no more free HRs are available. In the second
rem stage all tasks allocated to the HR are moved onto other HRs, still remaining in the
schedule, but only when a positive gain is achieved. Then again, HRs without allocated
tasks are removed from the schedule. Finally, the best project schedule coming from
all stages is chosen. The iterative process is repeated for every resource from the
resource library until no improvement can be found. At the very end, project tasks
may be shifted right to the latest feasible position into their forward free slack by
means of As Late As Possible (ALAP) schedule.

4.1. Distributed processing model

The distributed processing model is shown in Figure 1.

add1 | | add R
.« * "
add 2
rem 1.1 | rem 1.2 | | rem LR remn.l || remn.2 rem R.r
rem 2.1 rem 2.2 rem 2R r
-

Figure 1 Distributed processing model

In general, thereare R - (1 + R,.) schedule modifications that have to be calculated, where
R is the number of HRs and R, is the number of HRs that have left after particular add
stage. However, not all of them can be performed at the same time. At the beginning,
only R attempts to add a new HR to the schedule may be calculated. Each of the add stages
could be performed simultaneously. Afterwards, if any of them is finished, R, attempts in
the rem stage may be started. The attempts to move all tasks from each of HRs may also
be calculated separately. Thus, the maximal number of simultaneous modifications is R -
R, when all the add stages finish at the same time. The process iteration ends after
finishing all of the second stages.
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4.2. Implementation of the model

The distributed processing model (Figure 2) was implemented in Java. One application,
which is a tasks dispatcher (D), manages a pool of threads responsible for
communication with other worker applications, located on remote computers.

D
I I I 1 I I
v « « h

RMI RMI

A RMI  «
) RMI o
- C

pl C|lp h P, C | p

P P | (_: | P P

Figure 2 Implementation of the distributed processing model

(D - tasks dispatcher, T - thread, C - remote computer, P - process, RMI - remote method
invocation)

At the beginning, workers notify the dispatcher about their readiness to execute tasks.
The tasks dispatcher creates a new thread for each worker and joins it to the pool. The
pool contains as many threads as needed, but will reuse previously constructed threads
when they are available. On the remote computers, workers run as independent processes,
what makes them available for direct communication. Therefore, the tasks dispatcher may
uniformly split the computational tasks, so as to workload could easily be balanced. Each
remote computer runs as many processes as the number of processor cores, in order to use
the whole computing power of multi-core machines. During executing an iteration of the
algorithm, the tasks dispatcher sends schedule modification requests to the first free
worker. To this end, it uses Remote Method Invocation (RMI) for communication. If a
worker is not responding, it will be removed from the pool and the request will be sent to
another free worker. Workers receive project data and the searching parameters so as to
invoke a method, in order to perform the add or the rem stage. Afterwards, results of
modifications are sent back to the dispatcher and then the thread can be reused.
Synchronization occurs at the end of each of the iterations because all the rem stages have
to be finished in order to choose the best schedule.
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5. COMPARATIVE STUDIES

The efficiency of the algorithm described in the paper was estimated on 100 randomly
generated project plans containing from 30 to 60 tasks, and from 8 to 16 HRs with
random data. Each project plan was scheduled several times and results were averaged.
Tasks in the project plan may have at most 4 precedence relationships with probability
0,35. They can be easily scheduled because they have few predecessors or none. If the
probability of inserting the precedence relationships were lower, the project plan would
contain mostly unconnected tasks. On the other hand, tasks with two or more predecessors
significantly decrease the search space. In each project, resource availability was reduced
by allocating 30 tasks from PSPLIB, developed by Kolisch and Sprecher [9]. The set with
30 non-dummy activities currently is the hardest standard set of RCPSP-instances
for which all optimal solutions are known [4]. However, we considered an extension of
RCPSP where resources have already got their own schedule and a cost of the project, but
not the project duration, should be minimized. So even though we take the project
instances from PSPLIB, the results cannot be compared. The initial schedule was
generated by two greedy procedures mentioned at the beginning of section 4.

Implementation of the distributed model was run on two distributed systems:

« multicomputer built from PCs (Clusterpcs) that comprises 10 multi-core
computers with Intel Core i5-760 Processor (8M Cache, 2,80 GHz) and 2 GB
of RAM memory, connected via a Gigabit Ethernet TCP/IP local network,

*  regular cluster that comprises 1 head node with Intel Xeon E5410@2,33GHz,
16GB of RAM memory and 10 processing nodes with Intel Xeon
E5205@1,86GHz, 6GB of RAM memory, connected via a Gigabit Ethernet
TCP/IP local network.

Furthermore, to examine communication costs, an implementation of the model on a
single multi-core PC was tested, too.

5.1. Tests which examine implementation of the model in distributed environments

The algorithm scalability depends on the number of HRs because it is related to the number
of schedule modifications. The number of independent requests, and consequently the
need for workers, increases along with the increase of the number of HRs. Influence of
changing the number of workers on the computation time towards the number of tasks is
shown in Figure 3. In both distributed environments, the computation time significantly
falls as the number of workers grows. Decline is particularly visible when only few
workers are used. Finally, the computation time exceeds its minimum, no matter how
many workers is used. In both environments, also the increase of the number of tasks
influences the drop of the scheduling time. However, the cluster, despite slower CPUs,
copes better along with the increase of the number of tasks. In the cluster, the growth
of the scheduling time in more complex projects is slower, especially when only few
workers are used. In general, a reduction of the computation time looks similar in both
environments. It is worth noticing that, the computation time was reduced even to 6% of
sequential computation time for the project with 60 tasks and 12 HRs (Figure 3b, left
column).
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Figure 3 Computation times compared with the number of workers for constant number of HRs
(left column — Clusterecs, right column — theCluster)

A CPU usage in Clusterpcs during scheduling of a project with 35 tasks and 16 HRs was
examined (Figure 4). The CPU usage was monitored every 50 ms and the reads were
averaged at the end of calculations. More frequent reads could influence the processor
load. The number of HRs was chosen so that enough simultaneous attempts were provided
to make workers busy. PCs were running 4 workers each (one worker was assigned to
every core).
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No. of PC

No. of workers

Figure 4 CPU usage in Clusterpcs [%)]

Figure 4 illustrates how the schedule modification requests spread over the available
PCs. CPU usage on PC #1 is almost 100% but only when 4 workers are used. If the number
of workers increases, the load is balanced by the use of the other PCs. The distributed
algorithm scales well because the computational tasks may be uniformly splitted among
workers. Summing up the cores usage (counted in 100%), it grows from 3,7 cores for
4 workers to 9,48 cores for 36 workers. The total core usage together with the tasks
dispatcher was 10,02. Hence, the scheduling time was reduced 10 times by the use of 40
cores on 10 PCs.

5.2. Tests which examine the in uence of the communication cost on algorithm
performance

Distributed tests were executed in order to examine how the network latency influences
the algorithm performance. To that end, 4 workers were run on the ClusterPCs that
comprises 2 multi-core PCs and compared with 4 workers on 2 processing nodes in the
cluster and 4 workers on a single PC (so called LocalPC ). All workers were using RMI
for communication. At first, the number of modification requests was counted with
respect to the number of resources and the number of tasks (Table 1).

Table 1 The number of modification requests

No. task
No. resources 30 35 40
10 634 755 480
12 765 930 869
14 1009 694 1492
16 1412 1412 1564

The number of requests increases as the number of resources increases and varies
along with the increase of the number of tasks. However, the more requests are sent, the
greater will be the impact of communication cost on the performance. The average
scheduling time for a project with 30 tasks is shown in Table 2.
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Table 2 Average time of transferring data between the tasks dispatcher and workers for a project
with 30 tasks [ms] (Remote - workers located on 2 remote computers, Local - workers located on
the same machine, Resnum - No. resources).

No. tasks
ReSnum cluster Clusterpcs Localpc Threads
2 3 4 2 3 4 2 3 4 2 3 4
10 5587 3922 2949 | 3961 2603 1846 | 3355 2261 1963 | 2058 1350 996
12 7242 4825 3827 | 4660 3191 2300 | 4016 2876 2494 | 2419 1684 1311
14 9677 6427 5137 | 6187 4213 3042 | 5190 3718 3260 | 3128 2163 1671
16 12911 8548 6555 | 7745 5311 4010 | 6730 4787 4173 | 4371 3016 2360

It is clear that the scheduling time decreases when the number of workers grows.
Yet, the decline is very low between 3 and 4 workers in the Localpc because computer
resources start to be overloaded when 4 workers and the tasks dispatcher run on the same
machine. On average, the Localpc is about 13% faster than the corresponding Clusterpcs
(for less than 4 workers), due to low communication costs. On the other hand the
Clusterpcs is better when the number of workersexceeds the number of processor
cores. It is also not limited to the number of workers. But even the usage of 4
workers reduced the scheduling time by 54% in the ClusterPCs and by 48% in the
cluster, in the project with 30 tasks and 10 HRs. However, the reduction ratio in the
former decreases along with the increasing number of resources and does not change in
the latter. It means that the cluster copes better than PCs also with the increase of
the number of resources.

The average time of transferring data between the tasks dispatcher and 3 workers is
shown in Table 3. It increases when the number of tasks increases because more data
needs to be transferred. It also increases when the number of resources increases due
to increased number of requests that the tasks dispatcher has to handle.

Table 3 Average time of transferring data between the tasks dispatcher and workers for a project
with 30 tasks [ms] (Remote - workers located on 2 remote computers, Local - workers located on
the same machine, Resum - NO. resources).

No. tasks
ReSnum cluster Clusterpcs Localpc Threads
30 35 40 30 35 40 30 35 40 30 35 40
10 562 641 622 |584 629 687 [333 336 372|024 048 05
12 562 641 622 |59 676 723 |334 363 389 |02 0,25 044
14 566 566 629 |606 703 748 |338 378 403|014 029 037
16 577 572 631 | 649 673 733 |349 38 413 | 024 033 048

Yet, the increase of the time is much faster in the ClusterPCs, than in the cluster.
Consequently, the data transfer in the ClusterPCs gets slower in the projects with more
than 35 tasks and 10 HRs. On average, the data transfer is about 2,2 times slower in the
ClusterPCs than within a single multi-core PC. On a single machine, it may be
further reduced to less than 0,5 ms by the use of threads instead of processes in LocalPC
(so called Threads). Threads are much lighter than processes and share the process'
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resources. Thus, even if only one multi-core machine is available, the scheduling
time with the use of 4 workers may be reduced by about 47%. The scheduling time on a
single machine with the use of 4 threads is relevant to the scheduling in ClusterPCs on 2
multi-core PCs with 4 workers on each. But still, if the need for workers is greater, the
ClusterPCs is better. Moreover, running more threads than 5 on a 4-core processor is not
so efficient. Comparison results of time needed to transfer data between the tasks
dispatcher and 3 workers, averaged from all attempts, are shown on Figure 5.

W Threads
B Local _

PC |
O Cluster_
PCs

B Cluster

Ok M WAL M= O

Figure 5 Comparison results of time needed to transferring data
between the tasks dispatcher and 3 workers averaged from all attempts
[ms]

6. CONCLUSIONS

In the research, a distributed model was used in order to reduce the computation time for
a solution of the RCPSP when resources are partially available. An implementation of the
model on a multicomputer built from PCs was tested and compared with regular
implementation of the model on a cluster. The tasks dispatcher and workers were
connected through a local network and were using RMI for communication. The tasks
dispatcher was using multithreading for spreading and gathering data while, at the same
time, workers were calculating different schedule modifications and sending back the
results. The workers were run on remote computers as independent processes and hence
did not have to be synchronized. Workers were gathered in a pool managed by the tasks
dispatcher and were available for a direct use. The best efficiency was obtained when
there were as many processes running as the number of computer cores. Hence, the more
cores inside the computer, the more workers can run on it and fewer PCs are needed.
Consequently, the more workers the shorter the computation time, but only when there
is enough work to do for the workers. Too few workers cannot handle rapidly growing
calculation requests after the first stage of the algorithm. The maximum number of
workers depends on the number of HRs because it is related to the number of schedule
modifications Thus, the project scheduling cannot be speed up if there is a lot of resources
and not enough workers and vice versa.

The research showed that the multicomputer built from multi-core PCs may be
successfully used for reduction of the scheduling time. Obtained results are comparable
with the cluster. In both environments the reduction of time looks similar. However, the
cluster copes better along with the increase of the number of tasks and the number of
resources. In the cluster the communication cost is lower than in the Clusterpcs, in the
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projects with more than 35 tasks and 10 HRs. On a single machine, the scheduling time
is about 13%, faster than through a local network (for less than 4 workers) due to lack of
the network latency. It can be further reduced by about 47% by the use of threads instead
of processes. However, the computer resources start to be overloaded when the tasks
dispatcher and more than 3 processes or more than 5 threads run on the same 4-core
processor. Therefore, the Clusterpcs outperforms the Localpc when more than 3 workers
and the usage of threads when more than 7 workers are used.

The experimental results showed that the distributed model is well-balanced. The
computational tasks are uniformly splitted among workers. If the number of workers
increases, the load spreads over the available PCs. The distributed algorithm scales well,
adjusting to the number of workers. Moreover, if any of the workers crashes, its task will
be taken over by another worker and the proceeding will be continued. Various
complexities of the projects were tested. However in each, the scheduling time was
significantly reduced by the distributed calculations, even up to 6% of sequential time. In
comparison to the sequential computing, the number of used cores (counted in 100%)
was 10 times higher, during scheduling of a project with 30 tasks and 16 HRs by 36
workers.
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