

Annales UMCS Informatica AI 7 (2007) 143-151
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

PySBQL – Python-like query language constructed

using stack base approach

Marta Rogi ska, Piotr Wi niewski*

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru , Poland

Abstract
PySBQL (Python-like Stack Based Query Language) is a full scale programming and query

language. Its syntax is based upon the Python’s syntax, which makes PySBQL highly readable and
easy to use. Contrary to the classical approach in query languages, semantics is defined using a
common structure for programming languages – the Environment Stack (ENVS). As a query
language it is similar to SBQL proposed by Subieta [1,2]. The PySBQL language is implemented
in Monad – Object Oriented Database Management System.

1. Introduction
The same years the tendency towards objectivity has been observed. The

relational data model does not fulfill the needs of the databases users. A some
alternatives for the SQL query language has been searched for. Since the first
databases and the first query languages were created there has been a need to
combine them with a programming language. Many attempts to embed a query
language inside a programming language like C or Java showed failure. The
proper solution should combine the attributes of a query language and a
programming language. The most important aspects would be semantic
precision, simplicity, and code readability.

The classical design process of database applications is burdensome. One
problem is typological incompatibility, the other one is the difference between
the early binding of the programming language and the late binding of the query
language. Those problems are known as impedance mismatch. The procedural
query languages (PL/SQL, Transact SQL, etc.) are not a good solution, because
they are not fully featured programming languages. Therefore a query language
with a functionality of the programming language is needed. Such language
should have precise semantics with no “reefs”. It should result in a simple,

*Corresponding author: e-mail address: pikonrad@mat.umk.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

Marta Rogi ska, Piotr Wi niewski 144

readable code. The need for declaring variables and type pre-assigning can be
considered redundant. The only necessity is that a value stored within a variable
should be of a precisely determined type.

In this paper we describe PySBQL – a language which is a synthesis of
Python language and SBQL. The SBQL is a prototype language characterized by
the stack approach, designed by K.Subieta and coworkers [1,2]. PySBQL’s
syntax is mostly based on Python’s syntax enlarged by the query operators
construction. Semantics, similarly to SBQL, is based on the environment stack
and the query result stack. This leads to a compact language with no redundancy
in syntax, and no distinction in grammar between the database and the
programming language operators. Our goal in PySBQL design was to make it as
similar to Python as possible in order to make it easy to master (especially for
Python programmers). This will allow import to the new language Python’s
libraries and programs with only minimal modifications. Unfortunately, a
number of operators has been changed so full compatibility has not been
achieved.

2. Impedance mismatch

The impedance mismatch is a well known problem when dealing with
mapping data between the database systems and the programming languages
(mostly Java nowadays). It stems from differences in syntax, namespaces, data
abstraction levels, scope rules and typology differences, to name a few.

Addition of new features to existing languages does not solve those problems,
as it only decreases the discrepancies. A common example is JDBC library for
Java. It allows for certain type control using the methods like setBlob() or
getFloat() but it still needs to embed SQL queries in the Java methods which
belong to a completely different style of grammar. Even slightly complex
queries lack readability and the code is difficult to maintain.

All those problems could be solved by means of a new tool, namely a
language that allows for seamless blending of query and programming language
operators. It should allow for traditional programming language expressions like
literals, variables or operators, as well as should provide tools for querying and
manipulating databases. This tool could be used to communicate with a DBMS,
and to create full scale applications. In 1993, Kazimierz Subieta proposed a
concept of the Stack Based Query Language (SBQL) [1], which fulfills the
aforementioned goals.

3. Data model
Subieta proposed a set of store models that could be used in the Object

DBMS. The basic model is called M0 (first defined in [1] and called there the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

PySBQL – Python-like query language constructed… 145

Abstract Data Model). Within it there are three types of objects: atomic, pointer
and complex. Each of them has a unique, internal identifier, external name and
value. For the atomic object the value is of a simple type, like a number or a
string. Pointer object's value is the identifier of another object. There can be no
pointers without reference to a target object from the database. For the complex
object the value is a set of objects with no limitations to their quantity or level of
hierarchy. Objects of the same name may be of different types or may contain
different amount of sub-objects. In the model M0 an object store is a pair (O,R)
where O is a set of objects and R is a set of the top-most objects (roots). A
sample database is presented in example 3.1.

Example 3.1. Example of a simple database in a graphical form:
<i1, empl,{
 <i2, fname, “John”>
 <i3, sname, “Smith”>
 <i4, dept, i20>
 <i5, salary, 2000>
 }>
<i6, empl,{
 <i7, fname, “Bob”>
 <i8, sname, “Gordon”>
 <i9, dept, i20>
 <i10, salary, 2300>
 }>
<i11, empl,{
 <i13, sname, “Watson”>
 <i14, dept, i30>
 }>
<i20, dept, {
 <i21, name, “IT”>
 <i22, employee, i1>
 <i23, employee, i2>
 <i24, boss, i6>
 }>
<i30, dept, {
 <i31, name, “administration”>
 <i32, employee, i11>
 <i33, boss, i11>
 }>
R=[i1,i6,i11,i20,i30]

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

Marta Rogi ska, Piotr Wi niewski 146

The next model proposed is M1. It is basically the M0 model extended by the
use of classes and inheritance. It is obtained by an addition of a set of classes'
identifiers C and 2 relations: CC that determines inheritance among classes, and
OC that determines the membership of objects in classes. Classes are stored as
complex objects, yet their identifiers do not belong to O. The CC relation cannot
contain cycles. Classes are stored as complex objects as shown in example 3.2.

Example 3.2.
<i100, class,{
 <i101, classname, “empl”>

 other information of class empl

 }>
<i200, class,{
 <i201, classname, “dept”>

 other information of class dept

 }>
OC=[(i1,i100),(i6,i100),(i11,i100),(i20,i200),(i30,i200)]

This model has been successfully adapted in a few experimental object
databases management systems.

4. PySBQL
In this paper we present PySBQL – a tool for data manipulation and

applications design. It is a language that combines the concept of SBQL and
features of the Python programming language [3]. PySBQL deals with
expressions and queries in the same manner, thus in the following sections the
words expression, query and statement will be used interchangeably. The basis
of PySBQL lies in the M1 data model. We impose no limitations on complex
objects. The only constraints are derived from the object’s class definition. That
is to say a complex object may contain many instances of the same class of
objects (e.g. Job) or may contain no sub-objects.

In PySBQL, the basic queries are literals (numbers, strings) or names. Each
more complex query is constructed of sub-queries. It is a basically common
approach for programming languages. Similarly to Python, syntax is based upon
the indentations. This results in a highly readable code. If an imperative
construction like for is to be followed by a block of statements, then the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

PySBQL – Python-like query language constructed… 147

programmer needs to increase the indentation. The end of the block is denoted
by the decrease of the indentation level to one of the previous levels. A sample
code is presented in an example 4.1.

Example 4.1. Example of PySBQL’s code:

for p in (dept where name == „IT”).employee:
 p.salary *= 1.15
 if (p.salary > p.dept.boss.salary):
 p.salary, p.dept.boss.salary=p.dept.boss.salary, p.salary
 print p.(fname, sname, salary)

There are six kinds of query results: literals, references, tuples, lists,
dictionaries and binders. Binder is a pair (name, result), usually written:
name(result). All the results may be combined and nested in a fully orthogonal
way, but they are not objects – they have no identifiers and may have no names.
Function parameters belong to the same domain as results, therefore it is
possible to pass a query as a parameter. Like in Python, a programmer does not
have to place constraints on the number of function parameters. A sample
function definition is presented in example 4.2. It is also worth mentioning that a
function may return a reference to another function as a result.

Example 4.2. Example of a function’s definition and its usage:

def averegeWage(*wages):
 i,sum=0,0.0
 for w in wages:
 i+=1
 sum+=w
 else:
 print „No wages given”
 print sum/i
averegeWage((employee where dept.name==”Sales”).salary)

4.1. Evaluation
The evaluation is based upon an Environment Stack (ENVS). It is divided

into sections, called environments, filled in with binders. As in [2], one of the
bottom sections is a database section containing binders to root objects. The
difference between the stack used in PySBQL and the classical ENVS is that a
section of PySBQL’s ENVS may contain more than one binder with a given
name. During the evaluation of a statement, the occurring names are bound
using the ENVS. Example 4.1.1 presents evaluation of a simple query.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

Marta Rogi ska, Piotr Wi niewski 148

Example 4.1.1.
Let us discuss the simplest query:

 empl
It is recognized as a name, and it is searched for on the ENVS’s sections. The

search is stopped when a section with at least one binder with a name empl is
found. The result is a tuple containing the content of matching binders from this
section. For the database example 3.1 there are three binders to the name empl
in the database section, so the result is a tuple (i1,i6,i11)

Variables are simply binders placed in the proper sections. Their type is not
associated with a name but it is derived from value, like implemented in Python.
Although the variables are not declared, our language has a strong type control.
PySBQL is an interpreted language therefore the control is also dynamic. This
way the language allows for more flexible approach to the data being stored and
manipulated, but still it gives a certain safety when manipulating data of
unknown type. This problem is rarely present in programming languages, but it
is very common in databases and query languages. In the traditional query
processing in a host language the type control, if present at all, is difficult and
troublesome.

4.2. Operators

The operators in PySBQL are divided into 3 main groups: algebraic, non-
algebraic and imperative operators. The division is mainly based upon the way
of evaluation. Non-algebraic operators are evaluated with the help of ENVS, and
they cause new stack sections to appear. Having a query q1 <NAop> q2, it is
usually evaluated by application of operator to the sub-query q2 in the context of
the result of sub-query q1. Among such operators are . (dot), where, order by
etc. Example 4.2.1 presents an evaluation process for the non-algebraic operator
where.

Example 4.2.1.

 empl where sname == "Smith"
Let us analyze this query in the context of example 3.1. The operator where

will firstly evaluate the left sub-query empl. The result will be a tuple
(i1,i6,i11). Then for every object e=i1,i6,i11 the operator where will build a
section in the ENVS with binders to elements inside of e (note, that e is a
complex object). Starting with i1, within a new section a binder sname(i3) is
found. After evaluating sname=="Smith" the operator where will delete this
section. Then it will create a new section for i6, and after checking the
condition – again for i11. In the first case the condition sname == "Smith"

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

PySBQL – Python-like query language constructed… 149

will be evaluated into the True value, in the rest of the cases the value will be
false. As a consequence the operator where will return i1 as a result.

It should be noted that after the evaluation of the non-algebraic operator,
ENVS returns to its previous content. The algebraic operators, that do not use
the Environment Stack directly, are evaluated by the application of the operator
to the results of sub-queries. Within this group of operators there are all
arithmetical and logical operators. Imperative operators evaluate on the ENVS
and modify the database. After evaluation of an imperative operator, the ENVS
could be modified. As an example a=7 may insert a new binder into the top
section (if a binder a does not exist previously). Among those operators there
are object creation, insertion, assignment, deletion, etc. They are necessary in
order to work with a database.

Another interesting group contains iterators like while, if, and for. Their
structure and grammar are taken from the Python language, but their semantics
is slightly changed. The main difference is visible within the for operator. To
allow queries such as

 for n, surn in empl.(fname,sname):
 print n, surn

Some changes in the way the for operator treats missing values had to
performed. In our example one of the empls does not have a fname sub-object.
In Python’s for construction an error would be raised. In PySBQL the None
value is assigned to the variable. There are other slight differences regarding the
grammar of those operators and the approach to sub-queries as the part of
conditions. Iterators open a new section on the Environment Stack as they are
usually followed by blocks of operators.

The operators like . (dot), as, + or the comparison operators have been
modified to work with objects from a database. The dot operator may now be
followed by a list of arguments, that are, in fact, sub-queries. Example 4.2.2
shows the dot operator within a context that would be invalid for Python.

Example 4.2.2
print empl.(“Mr”, fname, sname, “earns”, salary)

The operator as in PySBQL creates synonyms for an object within a certain
query, + operator performs operation of adding elements of one tuple to another
(this is present in some of the implementations of Python, but is not present in
the standard). PySBQL also has few keywords that are not present in either
Python nor SBQL. Most important of them are <- and this. <- is used to insert
an object into another one, and this keyword is used in non-algebraic operator

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

Marta Rogi ska, Piotr Wi niewski 150

to refer to the object nested on the top of the ENVS. Its use is presented in the
following example:

print (empl where sname==“Smith”).(this, dept.boss)

The combination of imperative, algebraic and non-algebraic operators
together with the Environment Stack and iterators form a full functionality, that
a query and a programming language should possess.

The PySBQL classes are considered complex objects which may contain
other objects. Therefore their structure may change during runtime. Unlike many
programming languages PySBQL allows for multiple inheritance. This is
dictated by the need to represent real life correspondences.

The source of some “semantic reefs” in SQL is a NULL value. There are no
NULL values in PySBQL – missing information is simply not recorded,
although there exists a literal type: NoneType containing one element: None. It
is taken directly form the Python language.

5. Monad project

Monad is an object oriented database management system based on the
PySBQL language. Monad is a fully scalable programing platform. We can use
it as an interpreter to simple scripts, simple database applications, distributed
database applications with many aspects of distribution: classical client – server,
peer to peer net or other grid architecture. The Communication between
instances is based on a SOAP protocol. The PySBQL language with the Monad
system is dedicated to the programmers familiar with the Python language.
Monad will not support JDBC compliant API, because it does not support any
form of SQL. The JDBC driver is under construction, and it will be an API with
some kind of native queries. In the future Monad will integrate with
WebServises using OGSA-DAI technology to enable its integration with Globus
and other grid technologies. Another feature which will be implemented soon is
updatable views. They are known to be a difficult problem for the relational and
object-relational database management systems. The work by H. Kozankiewicz
[4,5] showed that updatable views are less problematic for query languages
based on the Stack Approach. Some usable features can be implemented as a
part of system library (like triggers, transaction, etc.) and this will keep the
PySBQL language simple.

6. Conclusions

The PySBQL language is deprived of “semantic reefs”. It is easy to use and
results in a readable code. It is a language very accessible, especially for the
Python programmers. Combining a query and a classical programming language,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

PySBQL – Python-like query language constructed… 151

PySBQL allows for efficient implementation of applications. It is dedicated for
database applications. Thanks to the syntax similar to Python it has ability to
import a number of Python’s libraries and codes.

References

[1] Subieta K., Beeri C., Matthes F., Schmidt J.W., A Stack-Based Approach to Query
Languages, (1993).

[2] Subieta K., Theory and Construction of Object-Oriented Query Languages. PJIIT –
Publishing House, ISBN 83-89244-28-4, (2004), in Polish.

[3] www.python.org
[4] Kozankiewicz H., Leszczylowski J., Subieta K., Updateable XML Views. Proccedings of

ADBIS’03, Springer LNCS 2798, (2003) 385.
[5] Kozankiewicz H., Updateable Object Views. PhD Thesis, 2005, http://www.ipipan.waw.pl/

~subieta/ -> Finished PhD-s -> Hanna Kozankiewicz.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:04:08

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

