Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

oo Annales UMCS

¢ @We Annales UMCS Informatica AI 7 (2007) 107-115 Informatica

;’%;@WEQJJ Lublin-Polonia
Vo Sectio Al

http://www.annales.umcs.lublin.pl/

Computer-based system for training and selecting mobile robot
operators — evolving software tools

Krzysztof Sapiecha*, Mariusz Bedla, Barbara L.ukawska, Pawel Paduch

Department of Computer Science, Kielce University of Technology,
Al 1000-lecia Panstwa Polskiego, 25 - 314 Kielce, , Poland

Abstract

A part of research on application of mobots (mobile robots) for watching real environment is
the computer-based system for training and selecting candidates for mobot operators. The game
played by the candidates is the main part of the system. The core of the game is touring simulator.
Firstly, it was assumed that speed of simulation would be a crucial factor for the game. Hence, the
initial version of the game was written in C++ for LAN. However, the experiments showed that
promptness of the reaction of the game to the actions of the players was not so important. It turned
out that wide and easy access to the game and its remote management (e.g. via Internet) are
necessary. The current version of the game uses Java technology. Rewriting the game from C++ to
Java created typical problems connected with moving an application from LAN to Internet. It was
not a trivial problem. The paper evaluates and compares both versions of the game and describes
problems with migration from C++ to Java.

1. Introduction

For years monitoring, watching and guarding have been human tasks.
Recently, more electronic devices like motion detectors and cameras are used to
support these activities. In many cases mobile robots (mobots) are also used for
this purpose. However, human being (mobot operator) is still responsible for
making decisions. Due to the fact, that guarded properties and equipment used
are valuable, guards should be properly trained. To train and rank the operators a
simulator and a game based on it were developed [1]. The simulator is similar to
a flight simulator. During the game a mobot driven by an operator moves in
virtual reality and takes photos. The task for the operator is to find all scene
changes in limited time.

"Corresponding authors: e-mail addresses: k.sapiecha@tu.kielce.pl, m.bedla@tu.kielce.pl,
b.lukawska@tu.kielce.pl, p.paduch@tu.kielce.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

108 Krzysztof Sapiecha, Mariusz Bedla...

Requirements which the game should meet to be efficient enough were
changing along with research proceedings. That brings about changes in the
software. Firstly, it was assumed that speed of simulation would be a crucial
factor for the game. Hence, the initial version of the game was written in C++
for LAN. However, experiments showed that promptness of reaction of the game
to the actions of the players was not so important. It turned out that wide and
easy access to the game and its remote management (e.g. via Internet) are
necessary. The current version of the game uses Java technology. Rewriting the
game from C++ to Java created typical problems connected with moving an
application from LAN to Internet. It was not a trivial problem.

The paper evaluates and compares both versions of the game and describes
problems with migration from C++ to Java. Section 2 shows how the research
proceedings have modified functional requirements for the game. In sections 3, 4
and 5 architectures of the following versions of the game are described. Their
advantages and disadvantages are pointed out. Section 5 includes comparison
considerations for the architectures described. The paper ends with conclusions.

2. Game functional requirements

In the rapidly changing environment a mobot is driven by an operator. The
goal of the operator is to plan a minimal mobot's tour to see every environment
change before a deadline [2,3].

At the very beginning of the research the question arose whether a human
being could achieve this aim or not? To answer the question the first research
consisted in planning a tour of the mobot in a room (including positions where
pictures should be taken) so that all changes in the room were detected within a
time limit [1]. In the game a player or a group of players equipped with a map of
the room used touring simulator to move across the room. Each player looked at
pictures corresponding to what camera lens saw. He (they) decided which
pictures had to be stored and what move would be taken next. His (or the group)
task was to find every change in the room as soon as possible. Basic functional
requirements for the game were as follows:

— fast simulation (real time),

— fast and flexible communication.

Because both: the mobot and the watched property may be expensive, the
mobot should not be driven by an occasional person. A mobot operator should:
detect all changes precisely (be perceptive), quickly (be responding fast but
without emotions), reach a conclusion, be a good strategist and stress resistant.
His qualifications should be as high as possible. It would be good to improve
them, e.g. during a training course, to achieve the highest watching quality
mobot operators can offer. Therefore, the next research consisted in checking to

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

Computer-based system for training and selecting mobile robot... 109

what extent the game played in virtual reality can help in training and ranking
candidates for mobot operators [4]. In this case, basic functional requirements
for the game were as follows:

— fast and easy individual candidate data acquisition and management,

— variety of operating systems cooperating with each other (mobot, server,

database).

As followed from experiments [5], that the game played in virtual reality
could be used for training mobot operators. However, the training course is
expensive, so we should try to find a cheap but still reliable method for selecting
the best candidates from those available [6]. To expand research to a larger
group of candidates, the game has to meet the following functional
requirements:

— be accessible in the Internet,

— be endowed with tools simplifying administration of large amount of data.

Furthermore, it was not certain how realistic there should be the environment
where the game was played. Hence, the following extra functional requirements
were added:

— environment in which the game takes place should be more realistic,

— objects used during simulation should be realistic.

To meet these requirements virtual reality in which the game was played was
enriched. The former geometric shapes were replaced by the objects like
wardrobe, chair, etc.

3. C++/PVM based architecture

The first version of the game was PVM (Parallel Virtual Machine) [7]
application written in C++ programming languages. Fig. 1 shows an overall
architecture of the application.

Three kinds of processes: supervisor, game server and game client are
distinguished. The supervisor process starts first. Then, it may start game servers
as slave processes. The supervisor collects all data about movements and
messages passed by players and puts them into logs so that one could analyse
them later. The game server can connect or disconnect players. Messages related
to player’s movements are adequately interpreted and the results are sent back to
clients. The game client is a program started using a separate computer by a
player who wants to join the game. It was assumed that every player would
download the whole scene where a mobot works. All pictures had to be rendered
on the client side. The players could gather into groups and help each others.

The PVM library was created for sending messages. However, it is not fast
enough, because of too many stages of sending information. A message is
packed, then transmitted and unpacked. Theoretically, it is possible to create a

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

110 Krzysztof Sapiecha, Mariusz Bedla...

source code of an application using the PVM library which can be compiled on
different operating systems, but in practice, it is almost always connected with
preparation of modified versions of programs for each operating system. For our
experiment we developed a version of the game for Linux. It also requires
proper configuration of every node of LAN due to the fact that the game uses
PVM. Additionally, maintenance of the game is difficult because updates are
complicated and time-consuming.

Client 1 Client 2

N

Server 1

/ Superyisor
Client 3 Client 5

S

Server 2 Server 3 g p| Client6

N T\

Client4 Client 8 Client 7

Fig. 1. C++/PVM version of the game

4. C++/QT based architecture

The second version of the game was written in the C++ programming
language using the QT library [8]. It consists of the following applications: game
server, clients and picture provider connected to a database or a mobot. Figure 2
shows connections between these applications.

The game server could be connected to real a mobot. At the very beginning of
the research the Lego MindStorm mobot with a camera was used.
Communication was based on sockets and TCP/IP protocol. An interface based
on XML connected the mobot driver and the game server. The client command
was forwarded by the XML interface to the mobot driver. The mobot
approached the destination and took a picture.

Because the mobot proved to be inaccurate, slow and expensive we decided
to create a touring simulator. Pictures taken by the mobot are stored in the
database. The simulator takes a picture from the database on demand of a client
who does not know which is a source of data. However, this method also proved
be inaccurate and too time-consuming. Therefore, finally the picture generator is

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

Computer-based system for training and selecting mobile robot... 111

used. It is a special program rendering pictures from the earlier designed virtual
scene. The pictures are put in the database.

Logs

o
&

EN

e}
&
=

(%]

»
9]
@

Mobot

Fig. 2. C++/QT version of the game

In comparison with the earlier version of the game, here is the only game
server. Players could not play in groups and are ranked on the basis of the
number of their movements, photos taken, mistakes and change discoveries.

Using XML for communication between the elements of the game makes it
possible to combine applications working using different operating systems and
written in different programming languages. The QT library used in this project
includes necessary support for sending the XML documents and simplifying
communication by sockets. This version of the game works much faster than
PVM one, but too many software modules make the game not as fast as it could
be. Client applications still require individual upgrading on every PC.

5. Java based architecture

The current version of the game is implemented in Java [9]. Hence, it is
widely available and more portable. The game consists of the following
elements: game server, administrative tool and client in the form of an applet
(Figure 3).

Due to the fact that all elements of the game are written in Java
communication does not use XML but object serialization. Serialization makes it
possible to send quite complex objects in an easy way. All data are stored in
relational database which enforces data conversion while writing/reading
between the database and the applications. In comparison with the previous

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

112 Krzysztof Sapiecha, Mariusz Bedla...

versions of the game this one is computer architecture and operating system
independent. Updating the software can be done in just one place — on www
server, where client applet is stored.

Client 1

Database

Sarver - Client 2

Clientn

Administrator

Fig. 3. Java version of the game

The server connects all players and manages the course of game. An
administrative tool may be used for: scheduling of the game, monitoring a state
of the game, managing sets of boards (adding, removing whole sets of boards
and individual boards), managing players and writing results of an experiment
into a file in XML, SQL or CSV format. XML format stores information about
all events occurring when the game was played. It is used to transfer data
between the touring simulator and the additional, external analyzing tools. In
order to protect data against the system failure, or to move them to another
system, an export to the SQL file could be done. Data in the CSV format are
preprocessed. They contain statistics about a course of game.

6. Comparison considerations

The versions of the game differ in many points: architecture of the game
evolved from LAN to Internet, from real time pictures acquisition to their
database, from C++ to Java, from geometric to almost real objects and so on.
Table 1 contains a brief comparison of these points.

To examine simultaneously more candidates the pictures taken by the real
mobot were stored in the database. The simulator took a picture from the
database on demand of a client. Finally the mobot was replaced by pictures
generator. Introduction of pictures generator made it possible to modify any
parameter of simulation, such as: environment, time, used objects, etc.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

Computer-based system for training and selecting mobile robot...

113

Table 1. Comparison of different versions of the game

Feature

C++/PVM

C++/ QT

Java

Communication

PVM environment.

Sockets + XML.

Sockets + Serialization
of objects.

Pictures storage

Only scenes and
objects are stored.
Original version of the
game assumed that
pictures would be
created on the client
side.

Initially, pictures were
taken from the mobot
camera. Next, from the
pictures provider written in
Java. Finally they were
stored in the database.

Pictures are stored the
in relational database.

A bit difficult, this

Much easier. It is sufficient
enough if computers could

Easy. The player should
just have a correctly
configured web browser

modules like mobot drivers
or picture generators by one
universal XML interface.

Configuration |solution was prepared . Y with the Java environment.
communicate with each ..
for local networks. . The game administrator has
other using TCP/IP. .2 .
additional options for game
configurations.
Se.rver runs on single PC. All applications require
Client programs are ;
Upload programs on |. . only the Java Runtime
.) installed apart. Sometimes .
Installation each node belonging to - . .~ |Environment. The player
recompilation of clients is .
the PVM pool. . connects using the web
needed for different
. . browser.
versions of Linux system.
Theoretlcally yes, but Theoretically yes, but Quite independent of
. practically difficult, . .
Portability practically we have never |computer architecture
ARG 27 L25T tried it and operating system
tried it. : perating system.
Whole system was very
flexible thanks to XML Java is computer
Flexibility and |Whole system was commumcatlon. 1t was archltec.ture and operating
. : . . possible to add different system independent.
universality quite hermetic.

Hence, all the applications
are quite portable.

Time measuring

Centrally.

Centrally and on the client
side.

Locally on the client side.

It is complicated because
of multilevel logics and

All updating of client

images.

game not as fast as it could
be.

Complicated due to the . o
Code P ue architectural distribution. [software can be made
. fact that the distributed ..
maintenance. . . The whole system was in just one place —
environment is used. . .
written in many programs |on Www server.
languages.
For the initial concept Very fast, but too many
software modules make the .
Speed good, but not for large Sufficient.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

114 Krzysztof Sapiecha, Mariusz Bedla...

To expand the research using a larger group of candidates the game had to be
accessible in the Internet, and modified to take into account features of the
Internet. The influence of communication delays had to be minimized and
course of game should be independent of discrepancy of time on the server and
the client sides. A larger number of clients could cause larger server workload.
To solve these problems a part of calculations was moved on the client side.
Previous versions required knowledge concerning installation and initialization
of the game. In the case of the Internet one could not assume anything about
network and a user. The game written in Java requires only installed Java
Runtime Environment and knowledge how to operate a typical web browser.

The game was rewritten from C++ to Java so that it was portable. In the C++
versions of the game one could use a mixed style of programming, object
oriented and procedural ones. Java almost enforces the object oriented style:
every variable must be an attribute of a class and every function must be a
method of a class. In C++ programmer is responsible for creating and deleting
objects. Not correct memory management may cause a leak of memory, which
we experienced in the beta versions of applications. In Java so called “Garbage
Collector” is responsible for cleaning up the memory. Therefore, the
implementation of the game in Java was much easier. Due to the fact that Java is
safer than C++ we made fewer errors and application could be developed in
shorter time. Usage of Java made it possible to reorganize structure of the game.
A client was not created as a standalone application but in a form of an applet
located on the web page. This resulted in portability of the game, its
independence of computer architecture and operating system, and made it
possible to develop application which is easy to update and does not require
sophisticated configuration. C++ language is not so flexible, but it has one great
advantage — speed. However, for an application which use slow network
connection it is not so important. Summarizing, comparison between Java and
C++: Java programmer may think more about “space of a problem”, than about
“space of a solution”, which cuts down time of development of an application.

To test how the operator behaves in different environments, two versions of
picture generator were implemented. The first version makes it possible to create
environment composed of only geometric figures while the other one generates
more realistic pictures, supplemented with textures, shadows, etc.

7. Conclusions

At the very beginning one Lego MindStorm robot was used. However, using
one mobot for experiment with a larger group of people was inconvenient. Due
to this fact touring simulator was created. Initially it was assumed that the speed
of simulation would be a crucial factor, so the first version of the game was

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 16:07:32

Computer-based system for training and selecting mobile robot... 115

written in C++ with the PVM environment. As followed from experiments
reaction time of the game on operator actions was not crucial. In the next
C++/QT version of the game PVM communication was replaced by sockets,
which simplified data transmission and management of the game. The third
version of the game was written in Java. The game became accessible in the
Internet and administrative tools were added.

Each solution described above is characterized by advantages and
disadvantages. They were chosen on account of current research proceedings.
The transformations of the game were not easy. It was only possible to use
logics of application, algorithms and experience gained from the previous
versions. It is simple illusion that moving from one kind of network to another or
from one object-oriented programming language to another is convenient.
Actually, such transformations lack any useful standards.

References

[1] Sapiecha K., Lukawska B., Paduch P., Experimental Data Driven Robot for Pattern
Classification. Annales UMCS Informatica Al, 3 (2005).

[2] Dagnino T., The Art Gallery Problem. http://cgm.cs.mcgill.ca/~godfried/teaching/cg-
projects/97/Thierry/thierry5S07webprj/artgallery.html

[3] Urrutia J., Watchman’s problem. http://www site.uottawa.ca/~jorge/openprob/Watchman/

[4] Sapiecha K., Lukawska B., Paduch P., System wspomagajqcy profilowanie operatorow
mobilnego robota. Zeszyty naukowe Politechniki Swietokrzyskiej, 43 (2005), in Polish

[5] Lukawska B., Paduch P., Sapiecha K., An application of virtual reality for training and
ranking operators of mobile robot. Conference IBIZA 2006.

[6] Sapiecha K., Lukawska B., Bedla M., Computer-based system for training and ranking mobot
operators — selection procedure. Conference IBIZA 2007.

[7] Parallel Virtual Machine http://www.csm.ornl.gov/pvm/pvm_home.html

[8] QT Library http://www.trolltech.com/products/qt

[9] Java Technology http://java.sun.com/

http://www.tcpdf.org

