Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 07:36:43

e Annales UMCS

@@ 8 Annales UMCS Informatica Al 5 (2006) 19-27 Informatica

;"’ovj“ o Lublin-Polonia
Voo Sectio Al

http://www.annales.umcs.lublin.pl/

A Markovian model of the RED mechanism solved
with a cluster of computers

Jarostaw Bylina“, Beata Bylina

Department of Computer Science, Institute of Mathematics, Marie Curie-Sktodowska University,
Pl M. Curie-Sktodowskiej 1, 20-031 Lublin, Poland

Abstract
The paper presents a working example of distributed application which can be used to find
stationary probabilities of states for queuing models — by generating a transition rate matrix and
solving a linear system. The presented example is connected to the RED mechanism which can be
used in the TCP/IP protocol to control packets flow. The paper also shows efficiency of the
application with the use of a various number of computers connected with Ethernet.

1. Introduction

Queuing models of the communication networks are a versatile tool for
investigating various characteristics of such networks — both in their project
stage and during their exploitation and extension. Queuing models are able to
represent properties of networks and can be relatively easily analyzed with
simulation tools and numerical methods. Among many numerical approaches
(mean value analysis [1], diffusion approximation [2], network calculus [3] and
others) we are most interested in Markov chains [4-8].

Markov chains are discrete state space stochastic processes with an
interesting feature (Markovian property). Namely, probabilities of the future
states of a Markov chain depend only on their current probabilities — not on any
past probabilities (Markov chains “lack of the memory” as it is sometimes
colloquially said).

Stationary probabilities of Markov chain states (and thus states probabilities
of queuing model and modeled system) are relatively easy to obtain from the
following equatoin:

1Q=0,

*Corresponding author: e-mail address: jmbylina@hektor.umcs.lublin.pl



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 07:36:43

20 Jarostaw Bylina, Beata Bylina

where m=(m,,..,m,) is a vector of state probabilities (m; is the stationary
probability of the ith state) which is to be found (so leni =1 and every

7; > 0); and Q is the infinitesimal generator of the given Markov chain. The
infinitesimal generator is a sparse square matrix of the size NxNN where N is the
number of the chain states. Each element g; of the matrix Q describes a
transition intensity from the ith state to the jth state which is given by:

where p;(Af) denotes a probability that the chain (model) being in the ith state
will change its state to j during an interval At.

The matrix Q is often shown as its corresponding franmsition graph of the
Markov chain (as in this paper, Fig. 3).

One difficult issue about modeling with Markov chains are huge numbers of
states and hence huge sizes of the matrix Q — millions of states are not
impossible if we want to model a system with a good accuracy (better accuracy
equals to more states).

Solving such a large linear system needs a great amount of computer memory
and significant speed of computation. Such possibilities are offered by modern
computer systems: vector and parallel machines, supercomputers, clusters and
grids.

2. A model of the RED mechanism

One of the best known algorithms helping to avoid connection congestion is
RED — Random Early Detection [9,10]. It is an active queue management
mechanism implemented in buffers of IP routers. The RED mechanism drops
packages not only when there is no place in the queue, but also earlier — with a
variable probability. The way the RED works is following. When a new packet
arrives to the buffer, a weighted average queue length n,,, is calculated:

Ny (1 - w) Ny, +WH,
where 7 is the current size of the buffer queue and w is a fixed small positive real
number. Next, the decision is made about the future of the packet. When there is
no place in the queue, the packet is obviously dropped. Otherwise, the

probability p4(n..,,) of dropping the packet is given by:



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 07:36:43

A Markovian model of the RED mechanism solved... 21
0, for Moy <My
_ navg - nmin
pd navg - 'pmax’ fOl" navg € <nmin’nmax>’ 2
nmax - nmtn
1, for Mo > Mys

where 1., e and p,.., are fixed parameters (see also Fig. 1).

max _J

avg

n

O

e

Fig. 2. A queuing model of the RED mechanism

We proposed a queuing model for a buffer with such a mechanism (Fig. 2).
The model consists of a source Z and three service stations B, A and N. The
source Z is a simple Poisson source (intervals between packets are distributed
exponentially) but its intensity is not constant. First, it is an on-off source, which
means that it can switch off (change its intensity to zero if its intensity is
positive) with the intensity p,; or switch on (change its intensity to minimal
positive if its intensity is zero) with the intensity p,, Moreover, intensity of Z (if
it is on) can adopt values: A, 2, 3A,..., LA depending on the behavior of routed
packets (see below).

The packet generated in Z is dropped (with the probability p.(n,.,) described
above) which means that it goes to N (really it disappears but a negative answer



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 07:36:43

22 Jarostaw Bylina, Beata Bylina

returns to packet's source); or else the packet is taken — which means it goes to
B. Packets served in B go to A (which means they go on from the router to its
destination, but acknowledgments go to packet’s source).

Stations A and N simulate a feedback. Namely, in real networks when a
source gets an acknowledgment it increases its intensity by one step. However,
when it gets a negative answer it halves its intensity. Such behavior is
implemented in our model: when a packet leaves the station A, the source Z (if it
is on) increases its intensity from /A, to (/ + 1) A when a packet leaves the station
N, the source Z (if it is on) decreases its intensity from /A to |(//2)A.

All stations (B, A and N) have exponential service times.

The states of the described model can be represented by the vectors (/,ng,
na,nn,a) where /A gives the current intensity of the source Z (or /=0 when it is
off), ng, na,ny are the numbers of packets waiting in respective stations and a is
an auxiliary number approximating the weighted average queue length n,,, (a*
denotes its new value, changed after a packet arrival). Transitions between the
states are schematically shown in Figure 3.

Such a model gives quite a lot of states — which is shown in section 4
(Table 1).

for 1>0 for 1=0
(Hl,nB,nA-LnN,a) CO,HB,HA'LnN,a)

for I>0
0,nB,np, AN, @

(Z,nB—l,nAH,nN,a) (l nB ., HA L BN, 4

\ .
o kN 1 palrag I
for 1=0

1,ng,np . 0NN, a

[12], n8, np N 1, @

Fig. 3. Transitions scheme for a Markov chain corresponding to the presented model
of the RED mechanism

3. A cluster application

We created and parallelized some algorithms suitable for finding states
probabilities for such models as described in section 2.

First, we needed an algorithm which can generate the matrix Q from a simple
description. Such an algorithm (and its implementation) was presented in
[7,11,12]. Moreover, this algorithm is adapted to work in a distributed
environment — for any kinds of computers connected with some network
(especially clusters).



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 07:36:43

A Markovian model of the RED mechanism solved... 23

Our algorithm is a modified Breadth-First Search algorithm (an algorithm for
traversing all the vertices of a graph) and it is based on the master-slave idea —
one of the processes (machines) is a master (a kind of supervising process) and
all the others are slaves (doing the actual work). Each slave generates its own
portion of the transition matrix (states are divided into separate pools a priori).
Each slave starts from a different state and generates all states adjacent to it —
and so on. If it happens that the slave generates a state not belonging to it, then it
sends the state to the respective machine (that owns the state). The master
checks if all the machines finished the generation and when they did, it gathers
(and then broadcasts) some summary information.

The slave algorithm for the generation of the matrix Q is following.

1.

98]

Get from the master description (in the form of simple conditions) of the
pools of states (that is, how to find out what pool a given state belongs to).
This is the only input that is distributed to slaves — everything else is
generated.

. Initialize data structures (an empty queue L, among others).
. Create a (random) state belonging to your pool and attach it to L.
. Take the first state v from L, find all adjacent states w and detach v

from L.

. For every state w:

— compute the transition rates from v to w,
— if w is in your pool and has not been generated yet,

then attach it to L,

else ask another slave (w’s owner) about w’s index in Q,
— insert the transition rate into the matrix Q.

. If any slave asks you about a state and this state has not been generated

yet, then attach it to L.

. If your queue L is empty, then let the master know it, else go to 4. When

the master gets such information from every slave, the algorithm is over.
Else go to 4.

Steps 5 and 6 are conducted in parallel.
After these steps every slave has its own (horizontal) part of the matrix Q, as
shown below (p is the number of slaves):

Q,
Q,
Q,.
Q,.

The second step was to parallelize one of the methods of solving huge linear
systems [13]. We decided to use iterative GMRES [14], because of its relative



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 07:36:43

24 Jarostaw Bylina, Beata Bylina

good speed and accuracy and ease of vectorization [15] and parallelization
[5,11].

We decided to choose a master-slave approach. It was rather natural decision
because after the generation we have the transition rate matrix Q distributed
evenly (more or less) among all the generating slaves. Now, those slaves are
going to solve the equation wQ = 0 together. In this part of our application the
master has more work to do than in the generation. Namely, it makes all the
operations on vectors (there are quite a lot of them in GMRES) with the use of
the ATLAS library [16]. However, the matrix Q resides in the slaves, so
operations on the matrix (that is, multiplying it by various vectors) are held as
follows. Respective parts of a vector to be multiplied are sent to the slaves by the
master, the slaves multiply them by their own parts of the matrix Q and send
results to the master, which totals them.

So, the second part of the application — namely solving the equation ©Q =0 —
starts where the generation ended, and it is following (steps for the master,
slaves are used only for the matrix-vector multiplication, which is a greater part
of all the computations).

1. Choose a (random) initial solution vector x0.

2. Multiply the matrix Q by x0, that is:

— send a part of the vector x0 to each of the slaves (each slave gets
elements of x0 with indices corresponding to row indices of the slave’s
part of the matrix Q),

— each slave multiplies its part of Q by its part of x0,

— receive the partial results from the slaves and sum them up to get
overall result.

3. Find the orthonormal basis and the Hessenberg matrix with the use of
Arnoldi process (there are many multiplications in this step — all are
conducted as in step 2).

4. Find a new approximate solution vector x0 from the above basis and
Hessenberg matrix [14].

5. If the approximation is not good, go to 2.

Our application is written as a set of C-language files, and the whole
communication between machines is implemented with the use of BSD sockets
what makes it portable to many operating systems (Linux, Unixes, etc.).
Moreover, with the use of such a low-level tool we have more control over the
communication and contents sent (so we can keep it reasonably low).

4. A numerical experiment
We tested our application in the following cluster environment: 15 Linux-
powered computers (Intel Pentium4 2.80GHz, 512MB RAM) connected with
Ethernet 100Mb/s. We tested it for various models, the RED mechanism model
described in section 2 among others. Our model was tested with three sets of



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 07:36:43

A Markovian model of the RED mechanism solved... 25

parameters which are shown in the left part of Table 1. Here we can also see the
size of each model (the number of its states).

Table 1. Parameters and times of computations of tested models

maximal
1 . " " (I)lfl.l:tl;zrs g Gg r Rr S Gs+Rs
8 4 4 4 1125 1 4 1 1 1 5
8 6 12 12 39546 7 9 5 54 5 68
8 8 8 8 45684 7 12 6 72 6 86

The second part of Table 1 presents times (in seconds) of computations (Gg,
Rr, Gs+Rr) for the selected number of computers (g, 7, s). The times are overall
times of the respective parts of the application activity, measured with the
function time(). Exact meaning of these notations is following:

— g — the number of computers, for which the generation was the fastest;

— Qg — the generation time for g computers;

— r—the number of computers for which solving was the fastest;

— Rz —the solving time for » computers;

— s — the number of computers for which the total working time was the

shortest;

— GstRs — the total working time for s computers.

Figures 4-6 show working times for different model parameters and for
various numbers of computers.

50 " T "
generation —
solving ——
a0 | TOTAL
o 30 |
[}
E
= 207
10 |
0

0 2 4 6 8 10 12 14
number of slaves

Fig. 4. Computation times for the model with 1125 states



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Datar 12/01/2026 07:36:43

26 Jarostaw Bylina, Beata Bylina
300 i T "
generation ——
solving
250 1 TOTAL
200
v,
o 150 |
£
=
100 1
50 1
0

2 4 6 8 10 12 14
number of slaves

Fig. 5. Computation times for the model with 39546 states

350

300 |

250

time [s]

100 |

50 1

0

200

150 1

generation
solving
TOTAL

-

0

2 4 6 8 10 12 14
number of slaves

Fig. 6. Computation times for the model with 45684 states

Conclusions

Our experiments show usefulness of distributed application for generating
and solving queuing models. Particularly, the first part of the implementation —
the matrix generation — gains a lot of efficiency when about seven computers are
used — especially for large numbers of space (here: about 40000).

The second part (the linear system solving) unfortunately does not use the
whole computing power which is in the computers (because of communication
issues), but for a large number of states solving such a system becomes at least
possible for some number of connected computers. Although GMRES is well-
known as a scalable algorithm [17] we could not show the adequate scalability

for our application.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 07:36:43

A Markovian model of the RED mechanism solved... 27

References

[1] Reiser M., Kobayashi H., Queuing Network Models with Multiple Closed Chains: Theory and
Computational Algorithms, IBM J. Res. Develop., 19 (1975).

[2] Fourneau J.-M., Pekergin N., Brief Introduction to an Algorithmic Approach for Strong
Stochastic Bounds, Proceedings from EuroNGI Workshop: New Trends in Modeling,
Quantitive Methods and Measurements, Jacek Skalmierski Computer Studio, Gliwice, (2004)
57.

[3] Le Boudec J.-Y., Thiran P., Network Calculus. A Theory of Deterministic Queuing Systems
for the Internet, LNCS 2050, Springer Verlag, (2001).

[4] Bolch G., Greiner S., de Meer H., Trivedi K. S., Queuing Networks and Markov Chains,
Modeling and Performance Evaluation with Computer Science Application, John Wiley, New
York (1998).

[5]1 Bylina J., Distributed solving of Markov chains for computer network models, Annales
UMCS Informatica 1, (2003) 15.

[6] Bylina B., The inverse iteration with the WZ factorization used to the Markovian models,
Annales UMCS Informatica, 2 (2004) 15.

[7]1 Bylina l., Distributed generation of Markov chains infenitesimal generator matrices queueing
network models, Annales UMCS Informatica, 2 (2004) 25.

[8] Bylina B., Bylina J., Using Markov chains for modelling networks, Annales UMCS
Informatica, 3 (2005) 27.

[9] Floyd S., Jacobson V., Random Early Detection Gateways for Congestion Avoidance,
IEEE/ACM Transaction on Networking, 1(4) (1997) 397.

[10] Hassan M., Jain R., Wysoko wydajne sieci TCP/IP, Helion, Gliwice, (2004), in Polish.

[11] Bylina J., 4 distributed approach to solve large Markov chains, Proceedings from EuroNGI
Workshop: New Trends in Modeling, Quantitive Methods and Measurements, Jacek
Skalmierski Computer Studio, Gliwice, (2004) 145.

[12] Bylina J., Bylina B., Distributed generation of Markov chains infinitesimal generators with
the use of the low level network interface, Proceedings of 4rd International Conference
Aplimat 2005, part II, Bratislava, (2005) 257.

[13] Bylina B., Bylina J., 4 review of numerical methods for solving large Markov chains,
Proceedings from EuroNGI Workshop: New Trends in Modeling, Quantitive Methods and
Measurements, Jacek Skalmierski Computer Studio, Gliwice, (2004) 75.

[14] Saad Y., Schultz M. H., GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems, SIAM Journal of Scientific and Statistical Computing, 7 (1986)
856.

[15] Bylina J., Bylina B., GMRES dla rozwiqzywania {fancuchow Markowa na komputerze
wektorowym CRAY SVI, Algorytmy, metody i programy naukowe, Polskie Towarzystwo
Informatyczne, Lublin, (2004) 19, in Polish.

[16] http://www.netlib.org/atlas/

[17] Sosonkina M., Allison D.C.S., Watson L.T., Scalability analysis of parallel GMRES
implementations, Parallel Algorithms and Applications, 17 (2002) 263.


http://www.tcpdf.org

