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Abstract 
In this paper a method of automatic generation of test scenarios for verification of specification 

requirements (temporal and functional) for reactive embedded systems is presented.  
 

1. Introduction 
The aim of design-validation is to check whether or not specification 

requirements (functional and temporal) imposed on a system are met [1,2].  
Most of recently proposed techniques of design-validation use formal 

verification methods, like model checking [1,3] and theorem proving [4]. These 
methods typically use automata based models [4] of a system and temporal logic 
(TL) [5] in order to express the required temporal properties. However, temporal 
properties, which may be expressed in this way are limited to safety and liveness 
[6,3]. Some extensions of TL can capture time properties more precisely. In 
Timed CTL [1,2] time-bounded versions of each time operators are introduced. 
Real-time logic (RTL) [6] includes special predicates, which relate events that 
happen in a system with the time they occur. The duration calculus [7] add 
operators to access intervals. On the basis of these extensions it is possible to 
verify certain design properties including temporal requirements. 

In [8] there are proposed two proof methodologies corresponding to two 
specification styles of real-time properties. A system is modeled as a real-time 
transitional one. Time properties are expressed in time-bounded logic or by 
explicit reference to a current time through a special clock variable. A deductive 
proof is then conducted to show the consistency with the specification. 

The formal verification methods are limited to small and medium size designs 
or are restricted to some subproblems. For large systems, simulation-based 
validation techniques are still most popular [9]. The main problem here is to 
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develop a set of input stimuli giving high validation accuracy. Some efficient 
methods of automatic generation of test scenarios to validate a system against 
functional requirements have already been developed [10,11]. However, there 
are no such satisfactory methods as far as temporal requirements are concerned.  
Moreover there are no efficient methods for validation of both types of 
specification requirements. 

The aim of this paper is to present a method of automatic generation of test 
scenarios for validation of embedded systems [12] against temporal and 
functional requirements. Test scenarios are derived from system requirements 
and are then applied to a model or a prototype of the system. Each test scenario 
consists of verification sequence (sequence of stimuli to be applied to system 
inputs) and the expected responses which are then compared with those 
generated by the system while simulating. Main features of the proposed method 
are described in sections 2 and 3. Section 4 includes short comparison, 
considerations and conclusions.  

 
2. Embedded system model 

It is assumed that a designer starts with gathering functional and temporal 
requirements (temporal constraints) for a system. These requirements are usually 
described in a textual form, but it is assumed that each of the requirements has a 
unique identifier. Manual translation to more formal specification (e.g. SCR 
[13]) is then performed and a suitable model of the functional requirements is 
automatically developed (as described in [10]).  

A model of an embedded system S is defined as a couple S = (T, G), where T 
is a set of tasks1 that should be executed by the system and G = (V, E) is a 
directed graph representing its functional requirements. Each functional 
requirement or its separated part (if any) and each task have unique identifiers 
denoted by RId and TId correspondingly. Execution time of a task is fixed and 
data-independent. V is a finite set of nodes. Nodes belonging to V correspond to 
stable states of the system. Values of state variables determine the state of S. A 
single node denoted by v0 distinguished from V represents initial state of the 
system. E is a set of edges. Each edge belonging to E represents transition 
between a given pair of nodes. Edges are labeled with stimuli, responses (if any 
is generated), requirements and tasks identifiers.  

Graph G can be a cyclic or an acyclic one. It depends on the system. Multiple 
edges are also enabled (in order to represent different causes of transition 
between the same states).  

Safety Injection System (SIS) for nuclear reactor [10] serves as an example 
for our method. Functional requirements for the system are given in Table 1. 
Each of the requirements is supplemented with identifiers of tasks which are 
                                                 

1 Tasks are extracted from a task graph [14,15]. 
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executed to meet the given requirement or its part.  On this basis a model of the 
system is developed (Figure 1). The state variables and their admissible values 
are: WP (P – permitted water pressure, TL – water pressure below the threshold 
LOW), Overridden (T – if Block has been asserted and F – if Reset has been 
asserted), TrefCnt (asserts counting of time, may have the values of 0, 1 and 2) 
and SJ (Off – if the valve is closed and On – if the valve is opened).   

 
Table 1. Functional requirements for SIS 

RId Description 

R1 The system shall assert SafetyInjection when WaterPres falls below LOW ( opening a 
valve T1). 

R2 

(a) A The system shall be blocked (blocking T3) in response to Block being asserted while 
Reset is not asserted and WaterPres is below LOW, and shall remain blocked until either 

(c) Reset is asserted or (b) WaterPres crosses LOW from a larger to smaller value 
(unblocking T4 and setting TrefCnt to zero T6). 

R3 Once SafetyInjection is asserted, it shall remain asserted until the system becomes blocked 
or WaterPres becomes greater than or equal to LOW (closing a valve T2). 

R4 
When the system is blocked and WaterPres is less than LOW, the system shall (a) start 
counting (increasing TrefCnt T5) and (b) automatically unblock (T4 and T6) itself after 

the third timing reference event is sensed on input Tref. 
 

 
Fig. 1. Functional requirements graph for SIS 

 
It is typical for reactive systems that they interact continuously with the 

environment in which they operate. Hence, constraints imposed on the system by 
the environment (external requirements) must be considered. These constraints 
include input signals frequency, time separation between signals occurrences on 
different inputs or inputs and outputs, etc [14]. 
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There may also exist time constraints expressing desired time relation 
between a system and its environment and between different tasks (some tasks 
or devices may require specific timing). In order to represent these constraints 
(internal requirements) minimal and maximal delays may be introduced. They 
define the amount of time allowed for execution of particular task(s). The 
minimal time delay determines the first possible moment of the time at which 
the execution of specified task(s) may be completed, whereas maximal time 
delay determines the time at which it must be completed. A temporal constraint 
is violated if the execution of task(s) is completed to early or to late. A unique 
Constraint Identifier (CId) is associated with each temporal requirement. 

Temporal requirements imposed on SIS are given in Table 2 where: @A 
denotes A as an initial event for execution of tasks, ’ and ” indicate paths 
associated with different tasks and () and {} denote constraint associated with a 
particular path and marked subsets of nodes respectively. Requirement described 
in the second row of Table 2 belong to the requirements associated with a group 
of paths. The remaining requirements are associated with particular tasks.  

 
Table 2. Temporal requirements for SIS 

Cid Tmin tmax Description Notation 

1 0 1 
Time required for opening a valve (SJ=On) when water 

pressure falls below the allowed threshold (@WaterPres < 
LOW). 

(1,2) 

2 0 0,5 
Time required for transition to a proper state (WP=P) when 

water pressure rise above the allowed threshold 
(@WaterPres >= LOW).   

{2,3,4,5}=> 
{1} 

3 0 2 
Time required for manual unblocking the system and to 

open the valve (@Reset=On, SJ=On) when water pressure is 
lower than the allowed threshold (WP=TL).   

(3,2)’, 
(4,2), 
(5,2) 

 

4 0 1,5 
Time required for closing a valve (SJ=Off) when Block is 

asserted (@Block=On) and water pressure is lower than the 
threshold (WP=TL). 

(2,3) 

5 0 3,0 
Time required for automatic unblocking and to open a valve 

(SJ=On) when the system have been blocked and three 
timing references have been sensed on input Tref.  

(3,2)’’ 

 
3. Verification sequences 

A solution applied here is based on the concept of critical paths. A path Sij 
from node vi to node vj in graph G is defined as a sequence of edges 
<ei,i+1,ei+1,I+2, ...,ej-1,j>, where ek,k+1 belonging to E denotes an edge between 
nodes vk, vk+1 belonging to V. Each path, to which a temporal constraint is 
associated, is called critical path [16,17].  
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Generation of verification sequences for all critical paths results in exhaustive 
verification of all temporal constraints, thus reductions are necessary. In our 
approach a reduced set of critical paths is selected and then evaluated to check if 
the paths cover also all functional requirements (paths should include edges 
labeled with all RId).The set is then updated with one-edge paths for missing RId 
if necessary. 

Each critical path determines a subset of tasks, which should be executed in a 
time given by a temporal constraint. A constraint may be imposed on a path 
representing given (in specification) subset of tasks. This situation allows 
existence of multiple paths (between different pairs of nodes), but all of them 
represent the same subset of tasks. An example of such a constraint is presented 
in Figure 2. For task T1 three critical paths (<e1,2>, <e3,4> and <e5,4>) are 
determined. 

 
Fig. 2. Constraint imposed on task T1 

 

 
Fig. 3. Constraint imposed on transition between nodes 2 and 4 

 
A constraint may be also imposed on a transition between given states of the 

system (referred to as source and target nodes respectively). Hence all paths 
between these nodes are critical ones and may represent different subsets of 
tasks. Such a situation is shown in Figure 3. Paths <e2,3,e3,4>, <e2,5,e5,4> and 
<e2,4> are all critical ones. 
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Design-validation based on exhaustive verification sequences is always valid. 
On the contrary, design-validation based on reduced verification sequences 
might lead to optimistic conclusions.  

The goal of our work is to generate a reduced but still comprehensive set of 
test scenarios for a system. To this aim some assumptions are taken. These are 
the following: 

1. each temporal constraint requires at least one verification sequence to be 
verified, but all tasks associated with any constraint have to be checked, 

2. execution time of each of the tasks belonging to T is fixed and it does not 
depend upon the way the task is started. Such assumption does not hold for 
general purpose systems but it usually holds for embedded ones. However, 
it is not true for tasks, whose execution time is data dependent. Then the 
validation results are only approximated ones, but they can be improved if 
we assume WCET (Worst Case Execution Time) for maximum delays 
or/and BCET (Best Case Execution Time) for minimal delays. 

On the basis of these assumptions, the number of paths to be generated and 
verified can be considerably limited. However, for some systems this might be 
too optimistic. Temporal correctness of execution of tasks is checked rather than 
of a particular critical path. Nevertheless, there is at least one verification 
sequence covering each temporal constraint in the generated set.  

The selection of critical paths to be generated and combined is based on 
comparison of subsets of tasks associated with these paths. Let two critical paths 
P and P*, and two sets of tasks T and T*, associated with P and P* respectively, 
be given. Path P covers P*, if T* is a subset of T.  

In Figure 4 draft and main procedures of the algorithm of generation of test 
scenarios are presented.  

 
test_scenarios_generation() 
{ 
 for (each constraint Cid) do 
      determine source and target nodes; 
 for (each Cid) do 
      if (constraint Cid imposed on tasks) then 
           chose random pair of nodes; 
           generate and save a path; 
      else 
           generate and save path(s) ; 
 combine critical paths; 
evaluate the set of paths;    
if (not all Rid) 
   update ST; 
save test scenarios; 
} 

Fig. 4. An algorithm of generation of test scenarios 
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At first source and target nodes for possible (not yet generated) paths are 
determined. Next, for each constraint paths are selected and generated according 
to the following rules: 

1. If a constraint is imposed on a subset of tasks then verification of any path 
containing these tasks is sufficient (they cover each other). The choice of 
the path to be generated is not of primary importance and may be random. 
For example, path <e1,2> in Figure 2 may be chosen. The remaining paths 
associated with the constraint are those rejected. Reductions preformed at 
this step are the most effective, because a number of paths may be 
significantly limited without their generation.  

2. If only source and target nodes are specified, paths are generated and 
associated with them subsets of tasks are determined and compared 
(covered paths are rejected). The minimal subset of paths associated with a 
given constraint consists of paths representing execution of different 
subsets of tasks. In Figure 3 path <e2,4> representing task T3 and 
<e2,3,e3,4> representing tasks T1 and T2 belong to the minimal set for the 
constraint. Path <e2,5,e5,4> may be dropped as a covered one.  

The execution of this step produces a reduced set of critical paths. It is the 
smallest set that includes critical paths representing all different subsets of tasks. 
Two path generation algorithms are used. The first one searches for all possible 
paths between specified nodes. The second one makes it possible to determine 
edges belonging to a path if tasks to be executed are specified. Both algorithms 
use similar techniques. During the generation of critical paths a Paths Tree (PT) 
is built and accepted nodes are added to it. The acceptance functions prevent us 
from exploring already visited nodes. Combination of the generated paths allows 
for further reductions. Minimal coverage of generated paths is reached in a 
similar way as in [10], e.g. a Scenarios Tree (ST) is built and paths are added to 
it. In the next step the set is evaluated to determine whether all functional 
requirements are covered by paths from this set or not. It relies on checking if all 
RId are represented by labels of edges in ST. In the case that not all RId have 
been found, a procedure similar to that in [10] is started. It explores the state 
space of G and adds one-edge path labeled with missing RId to ST. The 
algorithm of test scenarios generation ends after saving stimuli and responses 
labeling edges of ST. 

In Table 3 the final result of the application of the algorithm to SIS is given 
((PId) Sij (CId) denotes a critical path; Path Identifier (PId) is introduced to 
distinguish paths generated for CId time constraint). At the beginning ten critical 
paths were founded. Next, four of them were rejected during the generation 
process and another one during combination of the remaining paths. Because 
these paths did not cover the R2c requirement one extra edge was added to 
satisfy this requirement. Finally, a set of four test scenarios was produced 
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(Table 3). Experimentally calculated verification quality QV 2[17] for verification 
sequences from this set equals 1. It means that all errors, temporal as well as 
functional, randomly injected into the model were correctly detected. 

 
Table 3. Reduced set of test scenarios for SIS 

No Test scenarios (Pid)Sst(Cid) 

1 WaterPres < LOW/SafetyInjection = On 
WaterPres >=LOW/SafetyInjection = Off 

1S1,2(1), 
2S2,1(2) 

2 

WaterPres < LOW/SafetyInjection = On 
Block = On/SafetyInjection = Off 

Tref/ 
WaterPres >= LOW/ 

1S1,2(1), 
1S2,3(4), 

 
3S4,1(2), 

3 
WaterPres < LOW/SafetyInjection = On 

Block = On/SafetyInjection = Off 
Reset = On/ SafetyInjection = On 

1S1,2(1), 
1S2,3(4), 
1S3,2(3), 

4 

WaterPres < LOW/SafetyInjection = On 
Block = On/SafetyInjection = Off 

Tref/ 
Tref/ 

Tref /SafetyInjection = On 

1S1,2(1), 
1S2,3(4), 

 
 

1S5,2(5) 

 
The exhaustive set of test scenarios used for experimental evaluation of the 

reduced one consists of eight scenarios. The total length of all verification 
sequences belonging to the exhaustive set equals 31 stimuli, whereas the length 
of verification sequences in the reduced set is equal to only 14 stimuli. 
 

4. Conclusions 
Actually an embedded system designer may choose one of the following 

approaches to verification specification requirements: time budget-based [14], 
formal [1-4,8] and simulation-based verification [10,11].  

Some knowledge about time budgets for execution of tasks can help the 
designer to keep correctness of the system under control throughout the whole 
design flow. Though, it does not guarantee that any design error will occur. 
Moreover, usually calculation really true budgets is not easy. 

Formal verification techniques require the system specification requirements 
to be described in a form of logical expressions (formulas). It is assumed that the 
PRES+ model [1,2] is generated from an implementation of a system and it 
reflects exactly time relations in the real system. Such model may represent data 
and control flow, as well as concurrency. This is an advantage with respect to 

                                                 
2 Verification quality (QV) is defined as follows: Qv = 1-C0/C, where C0 is the number of 

optimistic verification conclusions (GO instead of NOGO), and C is the total number of 
verifications [17]. 
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other approaches. But to start the verification one requires an access to exact 
execution times for tasks and thus may be conducted very late in the design 
flow. 

Test scenarios generation for simulation-based verification does not require 
any time information and can be performed very early in the design process. 
Test scenarios can be reused for validation of the system (or its model) on 
multiple levels of design description and multiple design alternatives. 

In the paper a simulation-based method for validation of embedded systems 
against specification requirements is presented. Test scenarios obtained with the 
help of the method can be used for verification both, functional and temporal 
requirements. The method is easy to use in practice and verification sequences 
are short. Automating test scenarios generation makes the method fast and 
flexible. 

Our solution is inspired by the method presented in [10] which addresses only 
the problem of functional validation. We extended this method with the 
possibility of verification of temporal requirements. Distinguishing of tasks 
gives us an insight into internal behavior of the system and helps for appropriate 
selection of paths to be verified.  

Although, the method should usually provide good validation results there are 
some problems to be remembered. Reductions which are performed to get a set 
of paths and of test scenarios assume rejection of covered paths. In some 
situations (covered path represents fewer tasks than the covering one) it may 
lead to undetected violation of a temporal constraint, because the covering paths 
can compensate for the time. It must be also taken into consideration that if 
execution time of each task is not constant then the verification sequences are 
only rough ones. 
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