Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

oo, Annales UMCS

£ w%” “;c’; Annales UMCS Informatica Al 2 (2004) 91-99 Informatica

‘—%_? o Lublin-Polonia
oL Sectio Al

http://www.annales.umcs.lublin.pl/

Parallel implementation of the k-connectivity test algorithm

Przemystaw Sokotowski®, Pawel Konieczka®, Jakub Sochacki®,
Marcin Paprzycki®*

“Department of Mathematics and Computer Science, Adam Mickiewicz University,
Umultowska, 61-614 Poznan, Poland
bCompuler Science Department, Oklahoma State University, Tulsa, OK 74106, USA

Abstract

There exists a large number of theoretical results concerning fast parallel algorithms for graph
problems, however, scarcely one finds reports of their practical implementation. In an attempt at
partial filling this gap we discuss implementation of an algorithm performing the pretest for
k-connectivity. This test is based, first, on the Scan-First Search algorithm introduced in [1].
Utilizing this procedure we decrease the size of the input graph by removing selected edges so that
the resulting graph (certificate of K-connectivity) has only O(kn) left. During this part of
computations we can answer the question about K-connectivity negatively if a certificate cannot be
generated. Afterwards, we can apply the test described in [2] to establish k-connectivity in the
remaining cases.

1. Introduction

Let us start with defining the basic terms. An undirected graph G is defined as
an ordered pair G=(V, E), where V is the set of n vertices (|V|=n) and E is the set
of edges (|E|=m). Furthermore, for an edge e € E, e = {a, b} is an unordered
pair, where a, b are the vertices of G. We say that H is a spanning subgraph of G
if V(H) = V(G) and E(H) is the subset of E(G). T is a spanning tree of G if T is a
connected, acyclic subgraph of G (graph is connected iff any two vertices of G
can be linked by a path). The certificate of K-connectivity C is a spanning
subgraph of G such that C is k-connected iff G is k-connected.

According to Menger’s theorem [3] graph is K-connected iff there exist Kk
vertex-disjoint paths between any two vertices in V. This theorem gives an easy
algorithm for checking K-connectivity. Unfortunately, this method is inefficient

"Corresponding author: e-mail address: marcin@cs.okstate.edu. The research at Adam
Mickiewicz University was sponsored by a scholarship from the Fulbright Commission. The
computer time grant from the Poznan Supercomputing and Networking Center is kindly
acknowledged.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

92 Przemystaw Sokotowski, Pawel Konieczka, ...

for any larger number of vertices and/or edges. As a part of the solution one can
try to reduce the size of the graph by removing some edges (minimizing the
degree of vertices) in such a way as to keep the k-connectivity unchanged. We
will achieve this goal by trying to find the certificate of k-connectivity of G. If
we are not able to generate certificate of k-connectivity we will establish that G
is not k-connected (and our main problem is solved). However, it is still possible
to find the certificate for a graph that is not k-connected so we need to check
further the k-connectivity of the found certificate.

Finally, let us note that while there exist many ways of representing graphs,
we will utilize a matrix-based one. Here, a graph G is represented by a binary
matrix M={a;;} of size n*n (an incidence matrix of G), where a;; = 1 iff there
exists an edge {i, j} in E, otherwise a;; = 0. Because G is undirected, matrix M is
symmetric so the complete information about the structure of the graph is stored
in the upper (lower) triangle of M.

In our literature search we have not found any parallel implementation of any
test for k-connectivity. There exists a number of theoretical results concerning
parallel methods for establishing k-connectivity but they are based on rather
unrealistic assumptions (for exapmle a polynomial number of processors).

We proceed as follows. In the next section we introduce the Scan-First Search
algorithm that is used to establish the certificate of k-connectivity. We follow
with the description and analysis of experimental results obtained on the 12
processor SGI Power Challenge parallel computer as well as on homogenous
clusters of 17 PC’s.

2. Scan-First Search algorithm

The crucial part of the algorithm is able to generate the certificate of
k-connectivity for a given graph G. We achieve this goal by iterating the Scan-
First Search (SFS) method (see [1] for its detailed description). In i-th round a
spanning forest F; of G; is generated. Then every tree in F; is numbered using the
prenumber algorithm. Thanks to this numbering it is possible to generate a
spanning forest F; (for every vertex V we choose its neighbour U with the
smallest number given by the prenumber algorithm). In the next iteration graph
Gi1 = (V, E(Gj) — E(F))) is obtained form G; by removing edges of forest F;. It
can be shown that after k steps graph C = (V, UE(E)) is the certificate of

k-connectivity of G (where, G; := G).

2.1. Parallelization of the SFS algorithm

Let us now describe the details of our parallel implementation of the SFS
algorithm:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

Parallel implementation of the k-connectivity test algorithm 93

1. To generate the spanning forest we use the Kruskal algorithm (description
can be found in [3,4]; in [4] a distributed version of this algorithm
somewhat similar to our approach is presented — we have not found any
information about actual implementation of any of these algorithms). The
idea of this algorithm is to build simultaneously trees from each vertex of
G. If it is possible, trees are connected into larger trees so as a result we
obtain a spanning forest (if graph G is connected, as a result we obtain a
spanning tree). In order to parallelize the process, every processor is
assigned some fraction of vertices of G (a given processor has knowledge
only about the edges between the assigned vertices) and it is building “its”
forest on those vertices. After each processor computes its forest, it
exchanges results of computations with another processor and then both
can generate larger forest using edges between their vertices. Because the
algorithm is deterministic, after exchange both processors generate the
same result.

2. Preorder numbering is a standard procedure which is described, for
instance, in [3]. The main problem is its parallelization. We used a simple
load-balancing approach: all trees in the forest are sorted in a non-
decreasing order with regard to the number of vertices and the first
(largest) tree is assigned to the first free processor, the second free
processor receives the second tree and so on.

2.2. Implementation details of Kruskal’s algorithm

Let us now provide further details of our parallel implementation of the
Kruskal algorithm:

1. Our approach is based on the master-slave model of parallel computing
(with the master only managing computations and the slaves performing
all “useful” calculations). Initially, the master distributes parts of the
coincidence matrix (in this paper we consider graphs with n = h*2"
vertices) between p slave processors (p is a power of 2). Every slave
receives N/p vertices — N/p rows of the coincidence matrix — so that every
edge starting in a given vertex is known while other edges (between
assigned vertices and others) cannot be used to grow the tree at first. Next
all necessary computations are performed independently by slaves.

2. Since the forest is built in an iterative fashion (see above), after each
iteration appropriate parts of the coincidence matrix are exchanged
between processors. Since at the end of the first run of Kruskal every
processor has his own copy of the matrix, in subsequent steps of checking
k-connectivity there is no need to send the complete matrix — master sends
only information about the removed edges so that processors can update
their matrices of interest. In i-th iteration processors exchange computed

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

94 Przemystaw Sokotowski, Pawel Konieczka, ...

forests and parts of matrix (in every iteration the whole matrix is filled
with missing rows). This exchange process is depicted in Figure 1.

1%%

Z\
2

EN VS I S

computations in the first iteration
kS computations in the second iteration
m computations in the third iteration

T 2

< exchange of data after the first iteration
4> cxchange of data after the second iteration

Fig. 1. Data exchange pattern for parallel Kruskal

The formula presented below as a C pseudocode is used to find processor to
contact and exchnage data with:

if ((0 <= (proc_nr - 1) % (count * 2)) && ((proc_nr - 1) % (count * 2) < count))
{with who = proc_nr + count;}

else
{with_who = proc_nr - count;}

where: count — iteration number, proc_nr — processor number, with who
— number of processor to contact.

3. Experimental results

The above described approach to establishing Kk-connectivity was
implemented in C with the MPI library used for parallelization. Tests were
performed on two parallel machines. First, a shared memory SGI Power
Challenge XL with 12 MIPS R8000 CPU’s, running at 90MHz and 1Gbyte of
RAM. Here, regardless of the fact that this is a shared memory computer, we
still proceeded with the MPI-based parallelization and the native SGI-provided
MPI implementation was used. Since our approach required utilization of power
of 2 slave processors we have used up to 9 processors of this machine (1 master
and 8 slaves). Our experiments were executed while other programs were
running. As a result we have observed a substantial variation in execution times.
In each case the best result out of multiple runs is reported, however, it cannot be
guaranteed that these are trully the best possible results. Second, a homogeneus
cluster of 17 PCs. Each of them had an Intel Pentium 4 processor running at 1.5
GHz and 256 Mbytes of RAM. PCs were connected by a Catalyst 6500 switch

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

Parallel implementation of the k-connectivity test algorithm 95

with full duplex 100Mbit/s switching capability. Open source versions of LAM
and MPI have been used. Here the experiments were performed at night on an
“empty” system, however, we have still observed a relatively large variation in
execution times. As above, the best results out of multiple runs are reported.
Finally, since we have used a master-slave approach in the results reported here
the “single-processor” mode consists really of two processors; one master and
one slave. Therefore, we have decided to compute speedup as a ratio between
time on two processors and time on p+1 processors.

On the SGI we tested our program using complete graphs on 1024, 2048 and
3072 vertices (for bigger graphs lack of available memory caused page swapping
which made our results practically useless). The results of our experiments are
reported in Figures 2-4. On the cluster we used graphs of size 2048, through
6144 vertices and reports are presented in Figures 6-7.

We chose complete graphs because for the problem of establishing
k—connectivity they constitute the worst case scenario. This is due to the fact that
the preorder numbering takes a very long time (as shown in Figure 5).
Furthermore, since the graph is connected, there is practically no parallelization
available in this stage of the algorithm. This being the case, this constitutes a
classical Amdahl-type bottleneck for the whole problem. We can therefore
observe the overall worst possible scenario for the complete SFS algorithm. The
parameter k was tested for two values: 20 and 30. Obviously, we made an
assumption that for bigger k speedup would be greater. The choice was caused
by the hardware characteristics of the SGI computer. 10-connectivity required
“almost no time at all to complete” while 40-connectivity took “forever to
complete.”

First, in Figure 2 we present the speedup obtained for the Kruskal algorithm
on the SGI computer for the graphs with 1024, 2048, 3072 vertices and for 1, 2,
4, and 8 slave processors. We follow with Figures 3 and 4 that represent that
speedup of the complete SFS algorithm for k = 20 and 30 respectively.

4,5

-4 1024
—£-2048

4
——3072 /
35

speedup
rn
w w

number of processors

Fig. 2. SGI Power Challenge; speedup of Kruskal algorithm for the graphs
of sizes 1024, 2048, 3072

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

96 Przemystaw Sokotowski, Pawel Konieczka, ...

1,6

—6=—1024
15 fjemi=2048

1,4 _| | ==y 3072 /E:I

1,3

speedup

1,2
1,1

2 3 5 9

number of processors

Fig. 3. SGI Power Challenge; speedup in the whole program for generating certificate
of 20-connectivity for the graphs of sizes 1024, 2048, 3072

15
1,45 | —==1024

1,4 {=H—2048
1,35 | ==—f==3072

S 1,3
® 1,25
a

S 121

1,15 -
1,1

2 3 5 9

number of processors

Fig. 4. SGI Power Challenge; speedup in the whole program for generating the certificate
of 30-connectivity for the graphs of sizes 1024, 2048, 3072

Three observations can be made. First, speedup of Kruskal algorithm is
relatively good. The efficiency reaches almost 50% for 8 slave processors.
Second, speedup for k = 20 and 30 is very similar but slightly worse for k = 30.
Third, the speedup of the whole process is substantially worse than that of
Kruskal algorithm. The latter two facts can be explained by the performance of
the second phase of the algorithm, which is illustrated in Figure 5.

Since we are experimenting with the worst case scenario of a complete graph
the second phase of the algorithm is performed almost sequentially and is
repeated as many times as the value of Kk (prenumbering is repeated in every
iteration of the algorithm). This explains the superior performance of the
20-connectivity case, where the Amdahl-bottleneck repeats only 20, instead of
30 times.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

Parallel implementation of the k-connectivity test algorithm 97

i

] /4

@ ™ M
256 512 1024 2048 4096 8192

number of vertices

time [s]
O RPN WM UIlO N 0

Fig. 5. SGI Power Challenge; time of numbering trees specified size with prenumber
algorithm by one processor

The results of experiments on the described above homogeneous cluster of 17
PC’s are depicted in Figures 6 and 7. First, the Kruskal algorithm and then the
whole SFS algorithm for 30-connectivity.

* —=— 2048
o “ —=F=—3072
§ , =t 1096
:,i s —>=15120
== 5144

2 3 5 9 17

number of processors
Fig. 6. PC Cluster; speedup in Kruskal implementation for the graphs of sizes 2048, ..., 6144

The results are very interesting and conforming to some of the earlier
observations. The speedup of Kruskal’s algorithm is much smaller for the cluster
than for the SGI parallel computer. This fact can be attributed to its information
exchange phases (Section 2.2, point 2). While we have been using MPI based
parallelization, the SGI is a shared memory computer and SGI provided native
MPI can manage information exchanges as prescribed in our code very
efficiently. At the same time the cluster, while connected by a relatively fast
switch, cannot move data around fast enough to obtain satisfactory speedup. In
this case even further increase in the graph size does not result in substantial

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

08 Przemystaw Sokotowski, Pawel Konieczka, ...

gains in speedup as such gains are counterbalanced by the amount of data
exchanged between processors.

1,6

1,5

» —f=— 2048
o —F=—3072
= et 4096
o 1,3
g —>=5120
(2]

1,2 5144

1,1

2 3 5 9 17

number of processors

Fig. 7. PC Cluster; speedup in the whole program for generating certificate of 30-connectivity
for the graphs of sizes 2048, ..., 6144

Overall the speedup of the SFS algorithm is similar on both computers,
however an interesting trend can be observed. As the size of the graph increases,
the overall speedup decreases. This is caused by the lack of parallelism in the
second phase of the SFS algorithm. This can be related to the results presented in
Figure 5. As the size of the graph increases, the time used by the prenumbering
phase increases exponentially. This is combined with the iterative nature of the
process thus further reducing any speedup gained in the Kruskal-phase of the
SFES algorithm.

7. Concluding remarks

In this paper we have presented the results of our attempt at implementing
parallel algorithm for establishing K-connectivity of the graph. We have
implemented and tested the Scan-First Search algorithm. We have found that it
is possible to implement the Kruskal’s algorithm quite efficiently. This is
especially the case for fast connection between processors (for instance, a shared
memory of an SGI Power Challenge). At the same time, on a cluster connected
over 100 Mbit/s network it was almost impossible to obtain satisfactory
performance. The situation is much worse as far as the second phase of the SFS
algorithm is concerned. We have used a rather simplistic approach to its
parallelization and combined it with the worst case input data (a fully connected
graph). This combination turned to be lethal to the performance of the code and
suggests one of the places where a different approach needs to be found. Overall,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 15:48:06

Parallel implementation of the k-connectivity test algorithm 99

however, the very fact that we were able to implement sucesfully parallel graph
algorithm and obtain speedup in the worst case input data should be treated as a
success.

There exists a number of ways that the research reported here can be
extended. First, from the results presented above one can conclude that the
distributed model of computations is not the best for our problem (and possibly
for most of the graph algorithms). Therefore it may be possible to improve
performance of parallel Kruskal algorithm through a shared memory oriented
implementation (for example using the OpenMP technology). The second
research direction is an improvement in parallelization of the preorder algorithm,
but for the time being we do not know how to do it. Finally, having this pretest
for k-connectivity implemented we are now able to improve any K-connectivity
test. Therefore, the next obvious step is to implement the algebraic algorithm for
testing k-connectivity as described in [2].

Acknowledgments

We wish to thank Jerzy Jaworski, Jerzy Szymanski and our families for help,
patience and indulgence.

References

[1] Cheriyan J., Kao M.Y., Thurimella R., Scan-First Search and sparse certificates: an
improved parallel algorithm for k-vertex connectivity, SIAM J. Comput., (1993).

[2] Linial N., Lovasz L., Widgerson A., Rubber bounds, convex embeddings and graph
connectivity, Combinatorica, (1988).

[3] Ross K.A., Wright C.R.B., Matematyka dyskretna, PWN, Warszawa, (1999), in Polish.

[4] Peleg D., Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia,
(2000).

http://www.tcpdf.org

