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Abstract 

There exists a large number of theoretical results concerning parallel algorithms for the graph 
problems. One of them is an algorithm for the perfect matching problem, which is also the central 
part of the algorithm for finding a maximum flow in a net. We have attempted at implementing it 
on a parallel computer with 12 processors (instead of the theoretical O(n3.5m) processors). When 
pursuing this goal we have run into a number of practical problems. The aim of this paper is to 
discuss them as well as the experimental results of our implementation. 
    

1. Introduction 
Development of parallel algorithms for the graph problems is a peculiar area. 

On the one hand, there exists a large body of research (and literature) that 
presents theoretical algorithms developed for a number of equally theoretical 
models of parallel computers (see [1] and references listed there). On the other 
hand, there exist almost no results where parallel graph algorithms have been 
implemented on the existing parallel machines.  

One of the sub-areas where such a situation is very clear is when the 
algorithms for finding perfect matching in graphs are considered. This problem 
has very well defined real-life applications. For instance, finding perfect 
matching in the bipartite graphs is a core of an algorithm for finding a maximum 
flow on the net [1,2]. Existing approaches to finding perfect matching in a graph 
are mainly based on the RNC algorithms. Namely, these are probabilistic 
algorithms computed in polilogarithmic time using a polynomial number of 
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processors [1-4]. Karp, Upfal and Widgerson were the first to propose an RNC 
algorithm for solving this problem [3]. However, in our work we have decided to 
follow a more elegant (and claimed to be simpler and more efficient) algorithm 
of Mulmuley, Vazirani, and Vazirani [4], which can be summarized as follows 
(for all the remaining details as well as theoretical background see [1,4-7]):  

Let G be a graph with a set of vertices V and edges E: G = (V, E),  
|V| = n, |E| = m 

1. For each edge eij = (i,j)∈E select randomly a number wij ∈ [0,...,2*m]. 
2. Form the Tutte matrix of G (or Edmonds matrix for bipartite graphs), 

assign weight 2wij for each eij ∈ E (a result of a new matrix A is created). 
3. Compute in parallel the determinant det(A) and the adjoint D of A. 

– the adjoint matrix D has the following form: 
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– Aij is a matrix obtained from A by deleting the i-th row and j-th column. 
4. Let 2w be the highest power of 2 that divides det(A). 
5. For each edge eij ∈ E compute (det(Aij)2wij)/ 2w. 
6. If this value is odd then include eij in the matching. 
In [4] it is shown that this algorithm is computed in O(log2n) steps using 

O(n3.5m) processors. This result is based on the parallel integer matrix inversion 
algorithm proposed by V. Pan in [8]. This result brings some interesting 
consequences when one considers implementing this algorithm. Let us consider 
a graph with |V| = n = 80 vertices and |E| = m = 156 edges. In this case the 
proposed algorithm can be completed in (log280)2 ≈ 40 steps when implemented 
on 714,396,886 processors. Obviously, these numbers are based on the bigO 
complexity functions and thus do not provide us with exact values. However, 
they are presented to show the practical absurdity of a perfectly reasonable 
theoretical result. Not only the most powerful existing computer has fewer than 
10000 processors and the largest number of processors existing ever in a single 
machine was about 65000, but also one should ask how reasonable are 
thecomplexity functions involving 714 million of processors as far as, for 
instance, their connectivity and communication are concerned. Finally, observe 
how small a graph how large a computer are required and try to extrapolate the 
required computational power for realistic sizes of the networks for which flow 
problems are considered in practice. 
 

2. Proposed implementation  
While the theoretical estimates presented in [4] are highly unrealistic, we 

have decided to proceed with an attempt at an implementation of the proposed 
algorithm on an existing parallel machine. Our goal here was to establish its 
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realistic performance characteristics. To achieve this goal we have adjusted the 
original algorithm. First, in step (2) it is necessary to compute det(A) and n2 
determinants of det(Aij), i, j = 1...n. To achieve this goal we have used the matrix 
inversion; namely: D =det(A)*(A-1)T and the Gaussian elimination (complexity 
O(n3) [9]). Proceeding along this path we can compute A-1 and det(A) in a simple 
way (after reducing the matrix to an upper triangular form). However, due to the 
standard numerical “deficiencies” of operations on real numbers, the Gaussian 
elimination calculates only approximate values of the solution. At the same time, 
for the proposed algorithm to work, we need the exact values to know which 
edges belong to the matching (step 6 of the algorithm). That is also the reason 
why we could not use well-known libraries for linear algebra calculations (i.e. 
BLAS, LAPACK) that are efficient in matrix inversion – they use floating point 
numbers. To solve this problem we have decided to implement the Gaussian 
elimination based on the rational numbers and for this purpose to utilize the 
GMP (GNU Multiple Precision, [10]) library.  
 

2.1 Details of parallelization 
Our approach to parallelization follows the standard approach to 

parallelization of matrix computations described in [9]. However, since our 
approach involves rational numbers we cannot apply well-known blocking 
techniques that became a staple of high-performance matrix algorithms [9]. 
Instead we proceed with a simple master-slave model, where the master is active 
and takes part in the work of the whole group. In the main part of the algorithm, 
where the differences between the execution time of individual jobs can be the 
largest, we have used dynamic load balancing. The master tries to ensure 
availability of tasks for the slaves. It “puts aside” next job before beginning his 
part of computation. In this way, employees have next job in reserve and when 
they finish current one, they can take next even though the manager is busy. 

More precisely, in the algorithm we can distinguish two parts of computing 
the inverse matrix (finding solution to the system of equations A*X = I where A, 
X, I ∈ Rn×n, and I is the unit matrix). In the first part we apply Gaussian 
elimination to reduce matrix representing a given graph to the upper triangular 
form. Here, we perform independent simultaneous operations on rows 
distributed by the manager. In the second part, we back solve in parallel n the 
systems representing the n columns of the identity matrix obtaining the inverse 
of A. 
 

2. Experimental setup 
We have implemented the proposed algorithm in C. In order to make the 

algorithm work in parallel we used the POSIX threads. This solution was 
“imposed” by utilization of rational numbers. With the POSIX threads we avoid 
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moving around very large numbers (results of Gaussian elimination performed 
on rational numbers, see below). On the other hand, this solution restricted our 
implementation to parallel computers with shared memory (or virtual-shared 
memory). Furthermore, we had to organize access to the shared data which is 
somewhat more complicated by implementation of dynamic distribution of jobs. 
This made us ensure appropriate synchronization of calculation units (master 
and slaves) that was realized by using critical sections and special structures 
such as flags of access and progress. 

We have experimented with our code on a 12-processor SGI Power Challenge 
XL. This computer has shared memory and MIPS R8000 processors and runs 
IRIX version 6.2 operating system. Our code was compiled using MIPSPro C 
compiler with the optimization level – O2. Because of usage of threads we had 
to utilize clock based on daytime (we could not locate a special clock for 
threads). To reduce the effect of machine workload we have run multiple 
experiments (minimum of three) and in each case we report the best obtained 
time. 
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Fig. 1. Speedup of the solution process for p = 1, 2, …, 12 processors 

 
Table 1. Times (in minutes) required for finding the perfect matching for the increasing  

number of processors 

|V|(|E|)\p 1 2 3 4 5 6 7 8 9 10 11 12 
80 (156) 0.88 0.57 0.41 0.37 0.31 0.30 0.27 0.26 0.25 0.26 0.25 0.25 
120 (241) 10.12 6.32 4.18 3.25 2.76 2.49 2.40 2.22 2.13 1.96 2.01 1.91 
160 (303) 28.19 15.79 10.85 9.28 7.59 6.70 6.25 6.09 5.55 5.08 4.97 5.02 
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3. Experimental results 
The first series of experiments was devoted to finding perfect matching in the 

bipartite graphs. Due to the relatively long time of computations (the SGI Power 
Challenge is an almost 10 year old technology) we have experimented with 
relatively sparse graphs (the first of them is exactly the graph mentioned in the 
introduction to illustrate the purely theoretical value of some well-known 
algorithms). In Table 1 and Figure 1 we present the time and speedup obtained 
for three graphs and for p = 1, 2, …, 12 processors. Speedup is calculated using 
a standard formula S(p) = T1/Tp, where T1 – time on one processor and Tp – time 
on p processors; which is reasonable since we utilize all processors, including 
the master. 

The obtained results are satisfactory. On 11 processors we have obtained a 
speedup of 5.7 and thus efficiency above 50%. We also observe that as the size 
of the graph increases, the overall parallel performance of the code improves. 
Obviously, as the time of computation increases, synchronization has less impact 
on the procedure in comparison with the time of independent calculation 
performed independently by processors. 

Note that the proposed algorithm is very sensitive to the density of the graph. 
We have experimented with the increasing number of edges for a fixed number 
of (80) vertices and found that the total time increases from less than a minute 
for 83 edges to almost 30 minutes for 202 edges. This is directly related to the 
fact that for the increasing number of vertices, (the magnitude of weights 
assigned to edges is from the range [20,..., 22*m], where m = |E| (see below). 

Separately, we have experimented with general, non-bipartite graphs (as the 
proposed approach can find the perfect matching in any graph). Figure 2 and 
Table 2 represent the time of computation and speedup for 80 vertices and 155 
and 156 edge general and bipartite graphs and for p = 1, 2, …, 12 processors. 
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Fig. 2. Computation time (in minutes) for p = 1, 2, …, 12 processors 
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Table 2. Speedup of finding perfect matching for general and bipartite graphs 

 1 2 3 4 5 6 7 8 9 10 11 12 
general (155) 1.00 1.50 2.12 2.51 2.81 3.17 3.48 3.63 3.64 3.74 3.88 4.05 

bipartite 
(156) 1.00 1.55 2.14 2.35 2.83 2.92 3.29 3.44 3.50 3.34 3.56 3.53 

 
The results are similar to those obtained for the bipartite graphs. The only 

difference is that the time is substantially longer. By the same token, the 
obtained speedup is somewhat better for the general graphs. 

 
3.1. Parallel versus sequential algorithm 

While looking at the time required for solving the problem for relatively 
small and sparse graphs we came to conclusion that they are rather large. We 
have also observed the strong dependency of the algorithm on the length of the 
random number (number of edges) as and thus decided to compare the 
performance of our parallel code with that of a sequential method. We have 
selected a well-known Hungarian method [11]. This method has theoretical 
complexity O(n3) (similar to that of Gaussian elimination and computation of the 
adjoint – the core of the parallel algorithm). In Table 3 we present the time to 
find the perfect matching for the same three graphs as in Table 1. We report the 
time of the parallel algorithm on 1 processor, the best time on 2-12 processors 
and the time of the sequential algorithm (obtained on the same machine).  

 
Table 3. Time for computing perfect matching of the parallel and sequential algorithms.  

Times of parallel algorithm are reported in minutes, while those of the sequential  
algorithm are reported in seconds 

|V| parallel 
(1 proc.) 

parallel 
(min) sequential 

80 52.80 15.00 0.05 
120 607.20 117.60 0.26 
160 1691.2 303.60 0.91 

 
The results are devastating as they show that, in spite of significant shortening 

of time by distribution of work between processors, it is hard to talk about 
competitiveness of parallel algorithm. We have therefore looked for the reason 
for such an enormous difference in performance. Initially, we have directed our 
attention to the fact that the processing time seems to be related to the number of 
edges and thus the size of the random numbers filling the adjacency matrix. The 
algorithm we have implemented, utilizes random numbers of size up to 22|E|. 
Hence, to understand the effect of this fact, we decided to measure memory 
utilization of our program. The results for the three graphs that we have 
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experimented with are depicted in Figure 2 (these are approximate values gained 
from a tool listing existing processes in the operating system). 

The chart shows memory usage at the beginning of computation, when large 
numbers were drawn and stored (min); and at the moment when the program 
took up the most amount of memory (max), usually near the end of algorithms 
execution. Let us observe that even the initial memory utilization is rather large, 
but it explodes as the program progresses. This increase of total memory usage 
between the initialization of computation and its completion is related to fast 
increasing sizes of rational numbers during calculation of the adjoint matrix D. 
This is an effect of utilizing rational numbers that increase in size as the 
Gaussian elimination is carried out. To observe this effect more closely, we have 
decided to study further the effect of application of rational numbers on 
efficiency of the proposed algorithm. 
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Fig. 3. Memory utilization of the parallel algorithm; the results in Mbytes 

 
3.2. Additional analysis of operation on rational numbers 

In the first series of experiments we have established the times of basic 
operations on rational numbers of size 60 Kb (typical size for our program) and 
compared them with these of floating-point numbers (long double – 8B). We 
have performed 10 thousand multiplications and subtractions. The total time for 
the rational numbers was 183.4 seconds and for the floating-point numbers 0.014 
seconds. We have thus decided to check efficiency of operations on rational 
numbers while extending their size. These results determine the time (in sec.) of 
10 thousand operations.  

We used n Kb to denote random numbers from the range of [1..21000n]. Based 
on the results presented in Figure 4 we can conclude that the time required to 
complete operations depend linearly on the size of rational numbers. Thus, while 
the size itself is not a problem in the early stages of the algorithm, it becomes so 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 11/01/2026 10:52:44

UM
CS



Maciej Chróśniak, Jakub Dworniczak … 88 

as the size of the numbers increases, while the total number of arithmetical 
operations behaves like O(n3) magnifying the effect of increasing size of 
numbers.  
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Fig. 4. Time of 10000 operations for the increasing size of rational numbers 

 
3.3. The attempt at applying algorithm to the solution of the maximal flow problem 

As we mentioned in the introduction, algorithm for finding perfect matching 
can be an intermediate step to find a maximum flow in a net. Since this is a 
randomized algorithm, it requires multiple steps. More precisely, in order to 
handle this problem we have to perform about log2|V| intermediate steps of 
finding perfect matching. Besides, each procedure finds matching with 
probability greater than 1/2 (if perfect matching does not exist algorithm always 
gives a correct answer). Thus, theoretically, we have a guarantee that the 
procedure of searching for maximum flow works correctly with probability 
greater than 1/|V|. 

However, during our experiments we noticed that the algorithm gives correct 
answers more often than it could be concluded form the theoretical estimation 
(P>1/2 for C=2). We have made 100 tests and gained the following results: 
 

Table 4. Actual results of finding perfect matching for varying value of C; based on 100 test 

C 2 ¼ 1/16 
P 0.98 0.81 0.51 

 
There is some optimistic accent here, because we have obtained the actual 

probability P ≈ 1/2 for much smaller C (≈1/16) than expected from the 
theoretical analysis. But it does not mean, of course, that we could actually use 
the algorithm with this value of C. There exists a technique of improving the 
probability of correct answer. If we want to do this we have to repeat the 
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algorithm for perfect matching several times or use larger numbers as the 
weights for edges at the beginning of the procedure. Both methods lead to an 
extension of the time of work.  

Overall, these results are unsatisfactory taking into account the overall time 
that the proposed algorithm takes. That is why we have decided not to pursue the 
implementation of finding the maximum flow algorithm.  
 

4. Summary 
We have seen a large number of results concerning development of fast 

parallel algorithm for graph problems, in particular, for perfect matching. What 
is more, these algorithms, being probabilistic in nature, thanks to resignation 
from certainty of getting correct result, are usually more time-efficient. 
Unfortunately, to implement one of such algorithms, we had to modify the 
original algorithm and apply a method from linear algebra and utilize rational 
numbers. As it turned out, despite significant parallelization, our algorithm is not 
able to compete with a sequential one. 

Graph algorithms are a domain in which it is not easy to find parallel 
solutions. Existence of good optimized sequential procedures makes it even 
more difficult to create competitive algorithms. Many attempts giving 
theoretically optimistic results do not take into account practical realization. 
They do not bring up such problems as ability of communication between 
processing units and performance that can be achieved in the required 
architecture.  
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