
Annales UMCS Informatica AI 2 (2004) 31-36
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI

http://www.annales.umcs.lublin.pl/

Two modifications of Levenberg-Marquardt’s method

for fast batch neural network training

Viktor Sobetskyy∗, Stanisław Grzegórski

Department of Computer Science, Lublin University of Technology,
Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The problems of artificial neural networks learning and their parallelisation are taken up in this
article.

The article shows comparison of the Levenberg-Marquardt’s method (LMM) and its two
modifications JWM (method with Jacobian matrices formed in each step) and BKM (Jacobian
calculations only in the first step) for training artificial neural networks. These algorithms have the
following properties: 1) simpler calculations; 2) they are partly parallelized. The experiments
proved their efficiency. Experimental results demonstrate that neural network for training by them
needs a similar number of epochs as the LMM and lesser time for training.

1. Introduction
The learning for the big feedforward artificial neural networks with a large

training set takes a long time (in terms of days) [1,2], it also becomes imperative
to look at train algorithms modifications and parallel implementation schemes to
reduce this training time.

The experience of training feedforward artificial neural networks by
Levenberg-Marquardt’s method and its JWM and BKM modifications on single
processor computer and realization for multiprocessors cluster are stated in the
article.

LMM is the fastest and most popular of Newton’s methods [3]. These
methods use the batch training mode, rather than the pattern mode which is
based on derivatives of instantaneous errors. We propose two modification
schemes of it. These algorithms have lesser convergence than LMM, but
calculation time lesser than LMM.

∗ Corresponding author: e-mail address: viktor@pluton.pol.lublin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/05/2025 10:24:55

UM
CS

Viktor Sobetskyy, Stanisław Grzegórski 32

2. LMM
Levenberg-Marquardt algorithm originates from the Gauss-Newton method.

It is the fastest and most popular of Newton’s methods. These methods use the
batch training mode, rather than the pattern mode which is based on derivatives
of instantaneous errors [1,2].

For simplicity, we consider two layer perceptrons with weights matrice ,
, p, L, m – number neurons in input, hidden, output layers accordingly. The

weight vector w is formed by scanning these matrices in rows.

hW
yW

The training set consists of N examples.
Let us assume that:
– The length of w is

 K L p m= +() .
– All weights have been arranged in one vector

 1... ...j Kw w w⎡ ⎤= ⎣ ⎦w .

– All (instantaneous) errors form a column vector
 () () () []1, T

k mn n nε ε= − =w d y ε ε .
– The instantaneous performance index

 () () () ()2

1

1 1,
2 2

m
T

k
k

E n n nε ε ε
=

= = ⋅∑w n .

– The total performance index

 () ()
1

1 ,
N

n
F E n

M =

= ∑w w ,

where M = mN (m – number of outputs).
The symbol F is used instead of J to avoid confusion with the Jacobian

matrix.

– The instantaneous Jacobian matrix, J(n), is , one column per weight,
and can be partitioned into two blocks related to the hidden and output
weights, respectively:

m×K

() () ()⎡ ⎤= ⎣ ⎦
h yJ n J n J n .

– The batch weight update is the linear equations system solving
() ()() () ()µ⋅ + ⋅ ⋅ ∆ = − ⋅T T TJ w J w I w J w e w ,

where µ is a small constant, I is the identity matrix.
We propose to solve the system of linear equations using Householder’s

transformation [4]. This numeric method allows getting good solution accuracy.
Its parallelization gains good decreasing training time results, as well.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/05/2025 10:24:55

UM
CS

 Two modifications of Levenberg-Marquardt’s method … 33

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

1
15

1
30

1
45

1
60

1
75

1
90

1
10

51
12

01
13

51
15

01
16

51
18

01
19

51
21

01
22

51
24

01
25

51
27

01
28

51
30

01

Steps

Error

Fig. 1. Functional dependence of total perform index from the number

of epochs demonstrate of LMM

LMM algorithm convergence is demonstrated in Figure 1. Every line in the

figure corresponds to different weights vectors w0, but they have the same
training set N.

We attempt to parallelize it for the work on cluster. To solve this system we
use Householder’s transformation for each column of the system matrix. After
those transformations, the matrix will gain triangle shape.
We can parallelize some of the algorithm parts [2].

The matrix columns are shared between the processors and that way
processor pi gets columns { }2, , ,...i N i N ic c c+ + , N – mean number of processors,
pi – processor number, cij – column number.

Then one by one we define Householder’s transformation of each column.
The vector we get is sent to the other processors [4]. The next step is based on
each processor usage of the vector it gets to transform its own vectors.

The parallelization of LMM algorithm for different training sets and the same
weights vectors w0 is demonstrated in Figure 2. The number of columns in
Jacobian is equal to the vector w size. One epoch is the time for one batch
weight update calculation.

3. JWM and BKM

The JWM is a method of training artificial neural network. It is LMM
modification for 0=µ case. Then weights update system linear equation
becomes
 () ()⋅ ∆ =TJ w w e w .

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/05/2025 10:24:55

UM
CS

Viktor Sobetskyy, Stanisław Grzegórski 34

0

2000

4000

6000

8000

10000

12000

14000

16000

100 250 500 800 1000 1500 2000

Number of columns in Jacobian

C
al

cu
la

te
 ti

m
e

fo
r e

po
ch

, t
ic

s

Single Mode

CPU=3

CPU=2

Fig. 2. Dependence of training time on the number of columns in Jacobian

in single computer and 2,3 processor cluster

This is a standard Gauss-Newton method. One problem of the Gauss-Newton

method is that the system of linear equations does not often have solutions. For
solving this problem we update the weights in the 1+k iteration by the next
rule:
 1k k α+ = + ⋅∆ +w w t w
where wk is the previous weights value, ∆w is the batch weights update, t is the
learning rate variation, α is the noise (small random value).

We use conjugate gradient algorithm use to find learning rate variation t [3,5].
The results of the artificial neuron network learning by means of JWM for

test patterns are demonstrated by diagrams in Fig. 3.
The other BKM method is the BFGS algorithm modification. It does not need

to calculate Jacobian matrix for each iteration. Instead we calculate Bk matrix. It
is defined as:
 , ()0 =B J w

 1

T
k k

k k T
k k

+ = +
r sB B
s s

,

 k k k k= −r B s y ,
 , 1k k+= −s w wk

 () ()1k k+= −y e w e wk ,
 1k k α+ = + ⋅∆ +w w t w ,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/05/2025 10:24:55

UM
CS

 Two modifications of Levenberg-Marquardt’s method … 35

where wk is the previous weights value, ∆w is the batch weights update, t is the
variation of learning rate, α is the noise (small random value). We use conjugate
gradient algorithm to find variation learning rate.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

1 155 309 463 617 771 925 1079 1233 1387 1541 1695 1849 2003 2157 2311 2465 2619 2773 2927

Number of epochs

Error

Fig. 3. Functional dependence of total perform index on the number

of epochs demonstrate of JWM

The results of the artificial neuron network learning by means of BKM for

test patterns are demonstrated by diagrams in Fig. 4.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

1 20
1

40
1

60
1

80
1

10
01

12
01

14
01

16
01

18
01

20
01

22
01

24
01

26
01

28
01

Number of epochs

Error

Fig. 4. Functional dependence of total perform index on the number

of epochs demonstrated for BKM

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/05/2025 10:24:55

UM
CS

Viktor Sobetskyy, Stanisław Grzegórski 36

Training time per epoch is demonstrated in Figure 5. The upper line is for the
LMM time, the lower line is for JWM and BKM. The number of columns in
Jacobian is equal to the vector w size. One epoch is the time for one batch
weight update calculation.

0

5000

10000

15000

20000

25000

30000

2460 61410 63350 113750 301670 572300 842930

Number of elements in Jacobian

Ti
m

e
tra

in
in

g
of

 a
n

ep
oc

h,
 se

c

BKM and JWM LMM

Fig. 5. Calculating time of one epoch

4. Conclusions

This paper presents two algorithms for artificial networks learning. The main
advantage of the proposed algorithms is that they allow to train neural network
faster than the standard Levenberg-Marquardt’s algorithm. BKM method does
not need calculating Jacobian matrices of each step. Algorithms give good
results for recognition task accomplishing.

JWM and BKM are interesting with respect to parallelisation. Both methods
are partially parallel. The next experiment series could show which of them is
faster.

References

[1] Paplinski A.P., NNets, L7, (2002).
[4] Srinivasan A., Givens and Householder Reduction for Linear Last Squares on Cluster

Workstations, University of California at Santa Barbara.
[2] Sobetskyy V., Grzegorski S., Use clusters for training neural networks in tasks detection and

recognition of persons, Proceedings of IASTED international conference Artificial
Intelligence and Applications, ISBN: 0-88986-375-X, (2004).

[3] Vojevodin V.V., Vojevodin V.L., Parallels computing, BXV-Petersburg, (2002).
[5] Jezhov A., Shumski S., Neurocomputing and it implementations in economic, MIFI, (1998).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/05/2025 10:24:55

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

