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Abstract 

The problems of artificial neural networks learning and their parallelisation are taken up in this 
article.  

The article shows comparison of the Levenberg-Marquardt’s method (LMM) and its two 
modifications JWM (method with Jacobian matrices formed in each step) and BKM (Jacobian 
calculations only in the first step) for training artificial neural networks. These algorithms have the 
following properties: 1) simpler calculations; 2) they are partly parallelized. The experiments 
proved their efficiency. Experimental results demonstrate that neural network for training by them 
needs a similar number of epochs as the LMM and lesser time for training. 
 

1. Introduction 
The learning for the big feedforward artificial neural networks with a large 

training set takes a long time (in terms of days) [1,2], it also becomes imperative 
to look at train algorithms modifications and parallel implementation schemes to 
reduce this training time.  

The experience of training feedforward artificial neural networks by 
Levenberg-Marquardt’s method and its JWM and BKM modifications on single 
processor computer and realization for multiprocessors cluster are stated in the 
article.  

LMM is the fastest and most popular of Newton’s methods [3]. These 
methods use the batch training mode, rather than the pattern mode which is 
based on derivatives of instantaneous errors. We propose two modification 
schemes of it. These algorithms have lesser convergence than LMM, but 
calculation time lesser than LMM. 
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2. LMM 
Levenberg-Marquardt algorithm originates from the Gauss-Newton method. 

It is the fastest and most popular of Newton’s methods. These methods use the 
batch training mode, rather than the pattern mode which is based on derivatives 
of instantaneous errors [1,2]. 

For simplicity, we consider two layer perceptrons with weights matrice , 
, p, L, m – number neurons in input, hidden, output layers accordingly. The 

weight vector w is formed by scanning these matrices in rows. 

hW
yW

The training set consists of N examples. 
Let us assume that: 
– The length of w is  

 K L p m= +( ) . 
– All weights have been arranged in one vector 

 1... ...j Kw w w⎡ ⎤= ⎣ ⎦w . 

– All (instantaneous) errors form a column vector 
 ( ) ( ) ( ) [ ]1, ... ... T

k mn n nε ε= − =w d y ε ε . 
– The instantaneous performance index 
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– The total performance index 
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where M = mN (m – number of outputs). 
The symbol F is used instead of J to avoid confusion with the Jacobian 

matrix. 
 

– The instantaneous Jacobian matrix, J(n), is , one column per weight, 
and can be partitioned into two blocks related to the hidden and output 
weights, respectively: 

m×K

( ) ( ) ( )⎡ ⎤= ⎣ ⎦
h yJ n J n J n . 

– The batch weight update is the linear equations system solving 
( ) ( )( ) ( ) ( )µ⋅ + ⋅ ⋅ ∆ = − ⋅T T TJ w J w I w J w e w , 

where µ is a small constant, I is the identity matrix. 
We propose to solve the system of linear equations using Householder’s 

transformation [4]. This numeric method allows getting good solution accuracy. 
Its parallelization gains good decreasing training time results, as well. 
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Fig. 1. Functional dependence of total perform index from the number  

of epochs demonstrate of LMM 
 
LMM algorithm convergence is demonstrated in Figure 1. Every line in the 

figure corresponds to different weights vectors w0, but they have the same 
training set N. 

We attempt to parallelize it for the work on cluster. To solve this system we 
use Householder’s transformation for each column of the system matrix. After 
those transformations, the matrix will gain triangle shape. 
We can parallelize some of the algorithm parts [2]. 

The matrix columns are shared between the processors and that way 
processor pi gets columns { }2, , ,...i N i N ic c c+ + , N – mean number of processors,  
pi – processor number, cij – column number. 

Then one by one we define Householder’s transformation of each column. 
The vector we get is sent to the other processors [4]. The next step is based on 
each processor usage of the vector it gets to transform its own vectors. 

The parallelization of LMM algorithm for different training sets and the same 
weights vectors w0 is demonstrated in Figure 2. The number of columns in 
Jacobian is equal to the vector w size. One epoch is the time for one batch 
weight update calculation. 

 
3. JWM and BKM 

The JWM is a method of training artificial neural network. It is LMM 
modification for 0=µ  case. Then weights update system linear equation 
becomes 
 ( ) ( )⋅ ∆ =TJ w w e w . 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 01/05/2025 10:24:55

UM
CS



Viktor Sobetskyy, Stanisław Grzegórski 34 

0

2000

4000

6000

8000

10000

12000

14000

16000

100 250 500 800 1000 1500 2000

Number of columns in Jacobian

C
al

cu
la

te
 ti

m
e 

fo
r e

po
ch

, t
ic

s

Single Mode

CPU=3

CPU=2

 
Fig. 2. Dependence of training time on the number of columns in Jacobian  

in single computer and 2,3 processor cluster 
 
This is a standard Gauss-Newton method. One problem of the Gauss-Newton 

method is that the system of linear equations does not often have solutions. For 
solving this problem we update the weights in the 1+k iteration by the next 
rule: 
 1k k α+ = + ⋅∆ +w w t w  
where wk is the previous weights value, ∆w is the batch weights update, t is the 
learning rate variation, α is the noise (small random value). 

We use conjugate gradient algorithm use to find learning rate variation t [3,5].  
The results of the artificial neuron network learning by means of JWM for 

test patterns are demonstrated by diagrams in Fig. 3.  
The other BKM method is the BFGS algorithm modification. It does not need 

to calculate Jacobian matrix for each iteration. Instead we calculate Bk matrix. It 
is defined as: 
 , ( )0 =B J w

 1

T
k k

k k T
k k

+ = +
r sB B
s s

, 

 k k k k= −r B s y , 
 , 1k k+= −s w wk

 ( ) ( )1k k+= −y e w e wk , 
 1k k α+ = + ⋅∆ +w w t w , 
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where wk is the previous weights value, ∆w is the batch weights update, t is the 
variation of learning rate, α is the noise (small random value). We use conjugate 
gradient algorithm to find variation learning rate. 
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Fig. 3. Functional dependence of total perform index on the number  

of epochs demonstrate of JWM 
 
The results of the artificial neuron network learning by means of BKM for 

test patterns are demonstrated by diagrams in Fig. 4. 
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Fig. 4. Functional dependence of total perform index on the number  

of epochs demonstrated for BKM 
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Training time per epoch is demonstrated in Figure 5. The upper line is for the 
LMM time, the lower line is for JWM and BKM. The number of columns in 
Jacobian is equal to the vector w size. One epoch is the time for one batch 
weight update calculation. 
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Fig. 5. Calculating time of one epoch 

 
4. Conclusions 

This paper presents two algorithms for artificial networks learning. The main 
advantage of the proposed algorithms is that they allow to train neural network 
faster than the standard Levenberg-Marquardt’s algorithm. BKM method does 
not need calculating Jacobian matrices of each step. Algorithms give good 
results for recognition task accomplishing. 

JWM and BKM are interesting with respect to parallelisation. Both methods 
are partially parallel. The next experiment series could show which of them is 
faster. 
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