
 

Annales UMCS Informatica AI 1 (2003) 81-87 
Annales UMCS 

Informatica 
Lublin-Polonia  

Sectio AI 
http://www.annales.umcs.lublin.pl/ 

 
Fast solver for Toeplitz bidiagonal systems of linear equations 

 
Przemysław Stpiczyński∗ 

 
Department of Computer Science, Marie Curie-Skłodowska University,  

Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland 
 

Abstract 
We present a new efficient parallel algorithm for solving the first order linear recurrence sys-

tems with constant coefficients which is equivalent to the problem of solving Toeplitz bidiagonal 
systems of linear equations. The algorithm is formulated in the terms of level 1 and 2 BLAS (Basic 
Linear Algebra Subprograms) routines AXPY and GER. We also discuss its platform-independent 
implementation with OpenMP and finally present the results of experiments performed on a dual 
processor Pentium III computer running under Linux operating system with Altas as an efficient 
implementation of BLAS. The sequential version of the algorithm is up to 2.5 times faster than 
a simple sequential algorithm. 
 

1. Introduction 
Let us consider the problem of solving the following system of linear 

equations 

 

1 1

2 2

1 0

0 1 n n

x a
x ac

x ac

    
    −      =
    
        −    

O
M MO O

. (1) 

The matrix of the system is a bidiagonal Toeplitz matrix wich means that entries 
are constant along each diagonal. The problem of solving (1) is equivalent to the 
problem of solving the following first order linear recurrence system with the 
constant coefficients 

 1

1

for 1
for 2,...,k

k k

a k
x

a cx k n−

=
=  + =

. (2) 

The problem (1) or alternatively (2) arises in several fields of scientific 
computing [1-3]. For example, the well known Horner's scheme [4] can be 
expressed in terms of (2). The equation (2) is also a critical part of some 
                                                 
∗ E-mail address: przem@hektor.umcs.lublin.pl  

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 17:11:03

UM
CS



numerical algorithms [5-7]. Unfortunately, optimizing compilers are not able to 
generate machine code which would fully utilize the underlying hardware, thus 
due to the Amdahl's law [8], such part of an algorithm can cause that the overall 
performance of a program will not be satisfactory. So it is very important to find 
an efficient method for solving the problem. 

Different algorithms for the solution of the problem (2) have been designed 
for parallel [9-14] and vector [15-18] computers. However these algorithms like 
cyclic reduction, Wang's method and recursive doubling [12] lead to a 
substantial increase in the number of floating-point operations [8], what makes 
them unattractive in a classical serial systems (just like Intel Pentium) or parallel 
computers with a limited number of processors. 

The aim of this paper is to present a new efficient algorithm for solving (1) 
based on a recently developed efficient algorithm for solving m-th order linear 
recurrence systems with constant coefficients [17, 19]. The algorithm is 
formulated in terms of level 1 & 2 BLAS (Basic Linear Algebra Subprograms) 
routines AXPY and GER [20, 8] and when an optimized version of BLAS is 
used (for example Atlas [21], then the algorithm is up to 2.5 times faster than a 
simple algorithm based on (2), even on one processor. Moreover, it can be easily 
parallelized on shared-memory parallel computers using OpenMP [5]. 

 
2. Divide and conquer approach 

First let us note that our problem (2) is a special case of the more general 
problem of solving m-th order linear recurrence system with the constant 
coefficients for n equations [13, 22,] 

 

1

0 for 0

for 1 ,
m

k
k j k j

j

k
x

a c x k n−
=

≤
=  + ≤ ≤


∑  (3) 

which can be efficiently solved on different parallel and vector computers using 
the recently developed divide and conquer algorithm [14, 17, 19, 21]. Now let us 
briefly describe the divide and conquer algorithm for solving the first order 
linear recurrence systems with the constant coefficients (m=1). For the sake of 
simplicity, let us assume that there exist integers r and s such that rs = n. 
However, this assumption can be easily omitted: after we find rsx , we apply (2) 
to find 1,...,rs nx x+ . 

The recurrence equation (2) can be rewritten as the following block system of 
linear equations 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 17:11:03

UM
CS



 

1 1

2 2

x a
x a

x ar r

L
U L

U L

    
    
     =
    
        

    

M MO O
, (4) 

where ( )( )j 1 1x ,...,
T

jsj sx x− += , ( )( )j 1 1a ,...,
T

jsj sa a− += ∈Rs and the matrices are 

given by 

 

1 0

0 1

c

c

 
 − 
 
  − 

O
O O

, 
0

c
U

− 
= ∈ 

 
 Rs×s (5) 

The system (4) corresponds to the following recurrence system: 

 
1

1 1
1 1

j j-1

x a
x a x   for 2,..., .j

L
L L U j r

−

− −

 =
 = − =

 (6) 

When we consider the structure of the matrix T
1 se eU c= − , where ke  denotes 

k-th unit vector of Rs and set 1
jz a jL−= , then we get 

 1 1

j

x z
x z y  for 2,..., ,j j j rα

=
 = + =

 (7) 

where 1
j 1y eL−=  and ( )1j j scxα −=  for 2,...,j r= . 

The divide and conquer algorithm [13, 14] proceeds as follows. First we find 
(in parallel) all vectors kz  and y , then we find (sequentially) all coefficients jα  
and numbers ( )1j sx − , 2,...,j r= . Finally (again in parallel) we calculate 1s −  first 

entries of jx , 2,...,j r= . Experimental results show that the algorithm achieves 
reasonable performance for a bigger number of processors [23]. 
 

3. BLAS-based algorithm 
In our earlier work [17] we have shown that the first step of the algorithm 

reduces to the problem of solving the following system of linear equations 
 LZ F= , (8) 
where L is given by (5) and 
 ( )1 rz ,..., z ,y TZ = , ( )1 r 1a ,...,a ,e TF = ∈Rs×(r+1). 

The solution Z can be found row by row using the following vector-recurrence 
formula 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 17:11:03

UM
CS



 1,*
,*

,* 1,*

for 1
for 2,..., .k

k k

F k
Z

F cZ k s−

=
=  + =

 (9) 

where ,*kZ  and ,*kF $ denote the k-th row of Z and F respectively. Thus each row 
of Z can be computed using one call to the level 1 BLAS operation AXPY of the 
form x x+ yα← . Analogously, the last step of the algorithm can be expressed in 
terms of AXPY, which gives us a very fast algorithm for vector computers [17]. 
Unfortunately, in the case of scalar processors (just like Pentium III), the 
performance of the algorithm is comparable with the performance of a simple 
algorithm based on (2). 

The main idea of our new algorithm is to speed up the last step of the 
algorithm by using the routine GER from the level 2 BLAS. This routine is 
pretty much faster than the corresponding sequence of calls to the routine AXPY 
because it reduces the number of memory references in comparison with the 
number of arithmetic operations [8]. During the second step we collect the 
computed values of all coefficients jα  and compose the vector 

 ( )1u ,..., T
rα α= ∈Rr-1. (10) 

In the third (final) step, we compute the remaining 1s −  entries of all vectors 
x j , 2,...,j r= . It can be done by one call to the level 2 BLAS routine GER of 

the form xyTA A← + . Let ,x j , ,z j  and ,y j  denote 1s −  first entries of vectors 

x j , z j  and y  respectively. Then from (7) we get 

 , , ,
j jx z yjα= + . 

Now using (10) we conclude that the matrix ( ), ,
2x ,..., x r ∈R(s-1)×(r-1) satisfies the 

following 
 ( ) ( ), , , , ,

2 2x ,..., x z ,...,z y uT
r r= + . (11) 

This algorithm can be easily parallelized on shared-memory machines. 
Namely, if we partition the matrices Z and F into blocks of columns, then (8) can 
be rewritten in the following form 
 ( ) ( )1 1,..., ,...,p pL Z Z F F=  (12) 

and each block jZ  can by calculated using (9). Thus, when p processors are 
available, each processor will be responsible for computing one block jZ . 
Similarly we can parallelize (11). 
 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 17:11:03

UM
CS



4. Performance analysis and results of experiments 
Now let us study some basic facts on the complexity of the considered 

algorithms. It is clear that the simple algorithm based on (2) required 2 2n −  
floating point operations (“flops”). 
 
Proposition 1 The number of floating-point operations required by the 
sequential BLAS-based algorithm is 
 ( ),1 , , 2 2 2 4 2BLAST n r s rs r s n= − + − + . (13) 

 
Fig. 1. Performance (in MFlops) od the sequential BLAS-based algorithm  

for various s and n=42500 
 

Proof. After we choose the integers r and s, we perform a sequence of 1s −  
calls to the operation AXPY. In the second step we find last entries of 1r −  
vectors 2x ,..., x r .  The third step consists of ( )2 1r r−  flops. Finally we find the 
numbers 1,...,rs nx x+  using (2). Thus 
 ( ) ( )( ) ( ) ( ) ( ),1 , , 2 1 1 2 1 2 1 2BLAST n r s r s r s r n rs= + − + − + − + − . 

 
The method has been implemented in FORTRAN 77 and OpenMP [24] and 

tested on a dual processor Pentium III 866MHz computer running under Linux 
operating system. We have used Atlas [21] as the optimized version of BLAS 
and Omni OpenMP compiler to express the parallel execution of (12). The 
algorithm has been tested varying the problem sizes n and values of the 
parameter s. To discover an asymptotic behavior of the algorithm we have 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 17:11:03

UM
CS



decided to run our program not only for small degree systems but also for very 
large degree. The wall clock time has been measured using the routine 
omp_get_wtime(). Results of the experiments can be summarized as follows. 

1. The BLAS-based algorithm is faster than the simple algorithm based on 
(2) for n>500. However, the algorithm could be much faster on computer 
systems where the performance of AXPY and GER is relatively high. 

2. The BLAS-based algorithms (both sequential and parallel) achieve the best 
performance for the value of the parameter 2s n≈ . 

3. The sequential BLAS-based algorithm is up to 2.5 times faster than the 
simple algorithm based (Figure 2). The use of the parallel BLAS-based 
algorithm is profitable for great problem sizes (n>40000). 

4. For smaller values of n, the whole coefficient vector can be stored in the 
processor cache (Pentium III has 256KB cache). For n>45000 the 
performance of all algorithms rapidly decreases. This is caused by cache 
misses. 

 
Fig. 2. Performance (in MFlops) of the BLAS-based algorithm for various n 

 
References 

[1] Li L., Hu J., Nakamura T., A simple parallel algorithm for polynomial evaluation, SIAM J. 
Sci. Comput., 17 (1996) 260. 

[2] Munro I., Paterson M., Optimal algorithms for parallel polynomial evaluation, J. Comput. 
System Sci., 7 (1973) 189. 

[3] Swann H., On solenoidal high-degree polynomial approximations to solutions of the 
stationary Stokes equations, Numer. Methods Partial Differ. Equations, 16 (2000) 480. 

[4] Stoer J., Bulirsh R., Introduction to Numerical Analysis, Springer, New York, (1993). 
[5] Abu-Shumays I., Comparison of methods and algorithms for tridiagonal systems and for  

vectorization of diffusion computations, In: Numrich, R., ed., Supercomputer Applications, 
New York, Plenum Press, (1985). 

[6] Guitart J., Ruiz-Moreno S., Strict calculation of the light statistics at the output of a travelling 
wave optical amplifier, Elecronics Letters, 29 (1993) 1589. 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 17:11:03

UM
CS



[7] Larriba-Pey J.L., Navarro J.J., Jorba A., Vectorized algorithms for natural cubic spline and B-
spline curve fitting, In: Proceedings of PDP'96 Braga., (1996), 385. 

[8] Dongarra J., Duff I., Sorensen D., Van der Vorst H., Solving Linear Systems on Vector and 
Shared Memory Computers, SIAM, Philadelphia, (1991).  

[9] Carlson D.A., Solving linear recurrence systems on mesh-connected computers with multiple 
global buses, Journal on Parallel and Distributed Computing, 8 (1990) 89. 

[10] Gajski D., Processor array for computing linear recurrence systems, In: Preceeding of the 
International Conference on Parallel Processing., (1978) 246. 

[11] Greenberg A., R.E.Lander, Paterson M., Galil Z., Efficient parallel algorithms for linear 
recurrence computation, Inf. Proc. Letters, 15 (1982) 31. 

[12] Larriba-Pey J.L., Navarro J.J., Jorba A., Roig, O., Review of general and Toeplitz vector 
bidiagonal solvers, Parallel Computing, 22 (1996) 1091. 

[13] Paprzycki M., Stpiczyński P., Parallel solution of linear recurrence systems, Z. Angew. 
Math. Mech., 76 (1996) 5. 

[14] Stpiczyński P., Parallel algorithms for solving linear recurrence systems, Lecture Notes in 
Computer Science, 634 (1992) 343. 

[15] Axelsson O., Eijkhout V., A note on the vectorization of scalar recursions, Parallel 
Computing, 3 (1986) 73. 

[16] Hafner H., Shonauer W., Investigation of different algorithms for the first order recurrence, 
Supercomputer, 40 (1990) 34. 

[17] Stpiczyński P., Paprzycki M., Fully vectorized solver for linear recurrence systems with 
constant coefficients, In: Proceedings of VECPAR 2000-4th International Meeting on Vector 
and Parallel Processing, Porto, June 2000, Facultade de Engerharia do Universidade do Porto, 
(2000) 541. 

[18] Van Der Vorst H.A., Dekker K., Vectorization of linear recurrence relations, SIAM J. Sci. 
Stat. Comput., 16 (1989) 27. 

[19] A new message passing algorithm for solving linear recurrence systems, Lecture Notes in 
Computer Science, 2328 (2002) 466. 

[20] Anderson E., Bai Z., Bischof C., Demmel J., Dongarra J., Du Croz J., Greenbaum A., 
Hammarling S., McKenney A., Ostruchov S., Sorensen D., LAPACK User's Guide, SIAM, 
Philadelphia, (1992). 

[21] Whaley R.C., Petitet A., Dongarra J.J., Automated empirical optimizations of software and the 
ATLAS project, Parallel Computing, 27 (2001) 3. 

[22] Modi, J., Parallel Algorithms and Matrix Computation, Oxford University Press, Oxford, 
(1988). 

[23] Paprzycki M., Stpiczyński P., Solving linear recurrence systems on the Cray Y-MP, Lecture 
Notes in Computer Science, 879 (1994) 416. 

[24] Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R., Parallel Programming 
in OpenMP, Morgan Kaufmann Publishers, San Francisco, (2001). 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 12/01/2026 17:11:03

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

