LEOPOLD KOCZAN and KATARZYNA TRĄBKA-WIĘCŁAW

Subclasses of typically real functions determined by some modular inequalities

Abstract

Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk $\Delta:=\{z \in \mathbb{C}:|z|<1\}$, normalized by $f(0)=f^{\prime}(0)-1=0$ and such that $\operatorname{Im} z \operatorname{Im} f(z) \geq 0$ for $z \in \Delta$. Moreover, let us denote: $\mathrm{T}^{(2)}:=\{f \in \mathrm{~T}: f(z)=-f(-z)$ for $z \in \Delta\}$ and $\mathrm{T}^{M, g}:=\{f \in$ $\mathrm{T}: f \prec M g$ in $\Delta\}$, where $M>1, g \in \mathrm{~T} \cap \mathrm{~S}$ and S consists of all analytic functions, normalized and univalent in Δ.

We investigate classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes $\{f \in \mathrm{~T}: f \ll M g$ in $\Delta\}$, where $M>1, g \in \mathrm{~T}$, which we denote by $\mathrm{T}_{M, g}$. Furthermore, we broaden the class $\mathrm{T}_{M, g}$ for the case $M \in(0,1)$ in the following way: $\mathrm{T}_{M, g}=\{f \in \mathrm{~T}:|f(z)| \geq M|g(z)|$ for $z \in \Delta\}$, $g \in \mathrm{~T}$.

1. Introduction. Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk $\Delta:=\{z \in \mathbb{C}:|z|<1\}$, normalized by $f(0)=f^{\prime}(0)-1=0$ and such that $\operatorname{Im} z \operatorname{Im} f(z) \geq 0$ for $z \in \Delta$. Let S denote the class of all analytic functions, normalized as above and univalent in Δ, and SR - the subclass of S consisting of functions with real coefficients. Moreover, let us denote: $\mathrm{T}^{(2)}:=\{f \in \mathrm{~T}: f(z)=-f(-z)$ for $z \in \Delta\}$ and $\mathrm{T}^{M, g}:=\{f \in \mathrm{~T}: f \prec M g$ in $\Delta\}$, where $M>1, g \in \mathrm{~T} \cap \mathrm{~S}$. The symbol $h \prec H$ denotes the subordination in Δ, i.e. $h(0)=H(0)$ and $h(\Delta) \subset H(\Delta)$, where H is univalent. Let us notice that for $g_{1}(z)=z$

[^0]and $g_{2}(z)=\frac{1}{2} \log \frac{1+z}{1-z}$ we have $\mathrm{T}^{M, g_{1}}=\{f \in \mathrm{~T}:|f|<M$ in $\Delta\}$ and $\mathrm{T}^{M, g_{2}}=\{f \in \mathrm{~T}:|\operatorname{Im} f|<M \pi / 4$ in $\Delta\}, M>1$. These classes are briefly denoted by T_{M} and $\mathrm{T}(M)$, respectively.

The subordination in the classes T, S and SR has been investigated by several authors (for example [2], [3], [4]). The relation $\mathrm{T}^{M, g}=\{M g(h / M)$: $\left.h \in \mathrm{~T}_{M}\right\}$ for $g \in \mathrm{~T} \cap \mathrm{~S}$ (see [3]) provides the following formula connecting different classes of type $\mathrm{T}^{M, g}: \mathrm{T}^{M, f}=\left\{M f\left(g^{-1}(h / M)\right): h \in \mathrm{~T}^{M, g}\right\}$, $f, g \in \mathrm{~T} \cap \mathrm{~S}$. For this reason, instead of researching a class $\mathrm{T}^{M, f}$ one can consider a class $\mathrm{T}^{M, g}$, for instance T_{M} or $\mathrm{T}(M)$. We apply this idea to obtain results in various classes $\mathrm{T}^{M, g}$ from corresponding results in the class $\mathrm{T}(M)$. Investigating $\mathrm{T}(M)$ is possible because the integral formula for this class, the set of extremal points and the set of supporting points are known (see [4]).

Moreover, it is easy to prove that the class $\mathrm{T}^{M, g} \cap \mathrm{~T}^{(2)}=\{M g(h / M):$ $\left.h \in \mathrm{~T}_{M}\right\}$ for $g \in \mathrm{~T}^{(2)} \cap \mathrm{S}$.

In the paper we investigate classes similar to $\mathrm{T}^{M, g}$, in which the subordination is replaced with the majorization (the modular subordination) and the function g is typically real but does not necessarily univalent, i.e. classes $\mathrm{T}_{M, g}:=\{f \in \mathrm{~T}: f \ll M g$ in $\Delta\}$, where $M>1, g \in \mathrm{~T}$. The symbol $h \ll H$ denotes the majorization in Δ, i.e. $|h(z)| \leq|H(z)|$ for all $z \in \Delta$.

Furthermore, we broaden the class $\mathrm{T}_{M, g}$ for the case when $M \in(0,1)$ in the following way: $\mathrm{T}_{M, g}=\{f \in \mathrm{~T}:|f(z)| \geq M|g(z)|$ for $z \in \Delta\}, g \in \mathrm{~T}$.

Moreover, we study the subclass of the class $\mathrm{T}_{M, g}$, consisting of all odd functions, which we denote by $\mathrm{T}_{M, g}^{(2)}$.

The class $\mathrm{T}_{M, g}$ is not empty, because for example the function g belongs to this class. Analogously, the class $\mathrm{T}_{M, g}^{(2)}$ for $g \in \mathrm{~T}^{(2)}$ is not empty. If $M=1$, then the class consists of only one function g. So we investigate the class $\mathrm{T}_{M, g}$ for $M \in(0,1) \cup(1, \infty)$. For $g=i d$ and $M \geq 1$, we have $\mathrm{T}^{M, i d}=\mathrm{T}_{M, i d}$.

In the class $\mathrm{T}^{M, g}$ one can formulate theorems which are true for each function $g \in \mathrm{~T} \cap \mathrm{~S}$. However, in the class $\mathrm{T}_{M, g}$ it is impossible. Indeed, theorems in the class $\mathrm{T}_{M, g}$ in a fundamental way depends on the choice of the function g. It means that a theorem which is true in the class $\mathrm{T}_{M, g_{1}}$ generally is not true in the class $\mathrm{T}_{M, g_{2}}$, for $g_{1} \neq g_{2}$. In each case, we connect the researching class with the class T_{M} or $\mathrm{T}_{M}^{(2)}$.
2. Some properties of the classes \mathbf{T} and $\mathbf{T}^{(2)}$. During our investigation of the class $\mathrm{T}_{M, g}$, we use the following relations of classes T and $\mathrm{T}^{(2)}$, which we give as lemmas. In each lemma we shall prove only one implication. The other can be proved analogously. For simplicity, instead of h or $z \mapsto h(z)$ we will use $h(z)$.

Lemma 1. $f \in \mathrm{~T} \Longleftrightarrow \frac{1+z^{2}}{z} f\left(z^{2}\right) \in \mathrm{T}^{(2)}$.
Proof. Let $f \in \mathrm{~T}$. For $f \in \mathrm{~T}$ we have the Robertson formula $f(z)=$ $\int_{-1}^{1} \frac{z}{1-2 z t+z^{2}} d \mu(t)$, where μ is a probability measure on $[-1,1]$ (see [1], [2]). Then

$$
\begin{aligned}
\frac{\left(1+z^{2}\right) f\left(z^{2}\right)}{z} & =\int_{-1}^{1} \frac{z\left(1+z^{2}\right)}{1-2 z^{2} t+z^{4}} d \mu(t)=\int_{-1}^{1} \frac{z\left(1+z^{2}\right)}{\left(1+z^{2}\right)^{2}-2(1+t) z^{2}} d \mu(t) \\
& =\int_{0}^{1} \frac{z\left(1+z^{2}\right)}{\left(1+z^{2}\right)^{2}-4 \tau z^{2}} d \nu(\tau)
\end{aligned}
$$

with $\nu(A) \equiv \mu(2 A-1)$ (where A is a Borel set contained in $[0,1]$). Clearly, $\int_{0}^{1} \frac{z\left(1+z^{2}\right)}{\left(1+z^{2}\right)^{2}-4 \tau z^{2}} d \nu(\tau) \in \mathrm{T}^{(2)}$ (the representation formula for functions from the class $\mathrm{T}^{(2)}$, see $\left.[5]\right)$. Therefore, $\frac{\left(1+z^{2}\right) f\left(z^{2}\right)}{z} \in \mathrm{~T}^{(2)}$.
Lemma 2. $f \in \mathrm{~T}^{(2)} \Longleftrightarrow \frac{1+z^{2}}{1-z^{2}} \frac{f(i z)}{i} \in \mathrm{~T}^{(2)}$.
Proof. Suppose that $f \in \mathrm{~T}^{(2)}$. From Lemma 1, the function h given by $h\left(z^{2}\right)=\frac{z}{1+z^{2}} f(z)$ is in T . The definition of h is correct since $h\left((-z)^{2}\right)=\frac{-z}{1+(-z)^{2}} f(-z)=\frac{z f(z)}{1+z^{2}}=h\left(z^{2}\right)$. Then $f(i z)=\frac{1-z^{2}}{i z} h\left(-z^{2}\right)$. Hence, $\frac{1+z^{2}}{1-z^{2}} \frac{f(i z)}{i}=-\frac{1+z^{2}}{z} h\left(-z^{2}\right)$. Because of Lemma 1 and the fact that $h \in \mathrm{~T} \Leftrightarrow-h(-z) \in \mathrm{T}$, we receive $-\frac{1+z^{2}}{z} h\left(-z^{2}\right) \in \mathrm{T}^{(2)}$. This means that $\frac{1+z^{2}}{1-z^{2}} \frac{f(i z)}{i} \in \mathrm{~T}^{(2)}$, so we have the desired result.

Lemma 3. $f \in \mathrm{~T} \Longleftrightarrow \frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{f(z)} \in \mathrm{T}$.
Proof. Let $f \in \mathrm{~T}$. Then $f(z)=\frac{z}{1-z^{2}} p(z)$ for $p \in \mathrm{PR}$ (the Rogosinski representation, [2], [6]), where PR consists of all analytic functions p such that $p(0)=1, \operatorname{Re} p(z)>0$ for $z \in \Delta$ and having real coefficients. Clearly, $\frac{1}{p} \in \mathrm{PR}$, so $\frac{z}{1-z^{2}} \frac{1}{p(z)} \in \mathrm{T}$, i.e. $\frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{f(z)} \in \mathrm{T}$. From this and the equality $\left\{\frac{1}{p}: p \in \mathrm{PR}\right\}=\mathrm{PR}$, we get $f \in \mathrm{~T} \Leftrightarrow \frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{f(z)} \in \mathrm{T}$.

Taking $f \in \mathrm{~T}^{(2)}$ in Lemma 3, we obtain the following relation:
Lemma 4. $f \in \mathrm{~T}^{(2)} \Longleftrightarrow \frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{f(z)} \in \mathrm{T}^{(2)}$.
Lemma 5. $f \in \mathrm{~T} \Longleftrightarrow \frac{z^{3}}{\left(1-z^{4}\right)\left(1-z^{2}\right)} \frac{1}{f\left(z^{2}\right)} \in \mathrm{T}^{(2)}$.
Proof. Let $f \in \mathrm{~T}$. On the basis of Lemma 1, the function g given by $g(z)=$ $\frac{1+z^{2}}{z} f\left(z^{2}\right)$ belongs to $\mathrm{T}^{(2)}$. Hence, we have $\frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{g(z)}=\frac{z^{3}}{\left(1-z^{4}\right)\left(1-z^{2}\right)} \frac{1}{f\left(z^{2}\right)}$. From Lemma 4, we know that $\frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{g(z)} \in \mathrm{T}^{(2)}$ which is equivalent to $\frac{z^{3}}{\left(1-z^{4}\right)\left(1-z^{2}\right)} \frac{1}{f\left(z^{2}\right)} \in \mathrm{T}^{(2)}$.

Lemma 6. $f \in \mathrm{~T}^{(2)} \Longleftrightarrow \frac{z^{2}}{1-z^{4}} \frac{i}{f(i z)} \in \mathrm{T}^{(2)}$.
Proof. Suppose that $f \in \mathrm{~T}^{(2)}$. Let $g(z)=\frac{1+z^{2}}{1-z^{2}} \frac{f(i z)}{i}$. By Lemma 2, $g \in$ $\mathrm{T}^{(2)}$. Since $\frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{g(z)}=\frac{z^{2}}{1-z^{4}} \frac{i}{f(i z)}$, from Lemma 4 we get $\frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{g(z)} \in \mathrm{T}^{(2)}$ i.e. $\frac{z^{2}}{1-z^{4}} \frac{i}{f(i z)} \in \mathrm{T}^{(2)}$.
3. The majorization in the class of typically real functions T. At the beginning we study the case when $M>1$, i.e. the class

$$
\mathrm{T}_{M, g}=\{f \in \mathrm{~T}:|f(z)| \leq M|g(z)| \text { for } z \in \Delta\}, \quad g \in \mathrm{~T}
$$

At first, let $g(z)=\frac{z}{1+z}$. Clearly, $g \in \mathrm{~T} \cap \mathrm{~S}$.
Theorem 1. If $f \in \mathrm{~T}$ and $|f(z)| \leq M\left|\frac{z}{1+z}\right|$ for all $z \in \Delta, M>1$ (i.e. $f \in \mathrm{~T}_{M, g}$ where $\left.g(z)=\frac{z}{1+z}\right)$, then $f\left(z^{2}\right) \equiv \frac{z}{1+z^{2}} h(z)$ for some $h \in \mathrm{~T}_{M}^{(2)}$.
Proof. Let $f \in \mathrm{~T}$ and $|f(z)| \leq M\left|\frac{z}{1+z}\right|$. Hence, $\left|f\left(z^{2}\right)\right| \leq M\left|\frac{z^{2}}{1+z^{2}}\right|$. Let $h(z) \equiv \frac{1+z^{2}}{z} f\left(z^{2}\right)$. By Lemma $1, h \in \mathrm{~T}^{(2)}$. Therefore, $f\left(z^{2}\right) \equiv \frac{z}{1+z^{2}} h(z)$. From the above equality, we get $\left|\frac{z}{1+z^{2}}\right||h(z)| \leq M\left|\frac{z^{2}}{1+z^{2}}\right|$. This implies that $|h(z)| \leq M|z|<M$, that is $h \in \mathrm{~T}_{M}^{(2)}$.

Now, let us consider the function $g(z)=z+z^{3}$. We have $g(z)=\frac{z}{1-z^{2}}(1-$ z^{4}). Since $\operatorname{Re}\left(1-z^{4}\right)>0$ for $z \in \Delta$, from the Rogosinski formula (see [2], [6]), we get $g \in \mathrm{~T}$. Moreover, $g \in \mathrm{~T}^{(2)}$ and $g \notin \mathrm{~S}$, because $g^{\prime}(i / \sqrt{3})=0$.

Theorem 2. If $f \in \mathrm{~T}^{(2)}$ and $|f(z)| \leq M\left|z+z^{3}\right|$ for all $z \in \Delta$, $M>1$ (i.e. $f \in \mathrm{~T}_{M, g}^{(2)}$, where $\left.g(z)=z+z^{3}\right)$, then $f(z) \equiv \frac{1+z^{2}}{z} h\left(z^{2}\right)$ for some $h \in \mathrm{~T}_{M}$.
Proof. Suppose that $f \in \mathrm{~T}^{(2)}$ and $|f(z)| \leq M\left|z+z^{3}\right|$. By Lemma 1, the function h given by $h\left(z^{2}\right) \equiv \frac{z}{1+z^{2}} f(z)$ is in T. Therefore, $f(z) \equiv \frac{1+z^{2}}{z} h\left(z^{2}\right)$. From the second assumption, we have $\left|\frac{1+z^{2}}{z}\right|\left|h\left(z^{2}\right)\right| \leq M\left|z+z^{3}\right|$. Then $\left|h\left(z^{2}\right)\right| \leq M\left|z^{2}\right|<M$, i.e. $h \in \mathrm{~T}_{M}$.

Let us study the next function $g(z)=\frac{z+z^{3}}{1-z^{2}}$. We have $g(z)=\frac{z}{1-z^{2}}\left(1+z^{2}\right)$. Since $\operatorname{Re}\left(1+z^{2}\right)>0$ for $z \in \Delta$, from the Rogosinski formula, $g \in \mathrm{~T}$. Furthermore, $g \in \mathrm{~T}^{(2)}$ and $g \notin \mathrm{~S}$, because $g^{\prime}(\sqrt{\sqrt{5}-2} i)=0$.
Theorem 3. If $f \in \mathrm{~T}^{(2)}$ and $|f(z)| \leq M\left|\frac{z+z^{3}}{1-z^{2}}\right|$ for all $z \in \Delta, M>1$ (i.e. $f \in \mathrm{~T}_{M, g}^{(2)}$ where $\left.g(z)=\frac{z+z^{3}}{1-z^{2}}\right)$, then $f(z) \equiv \frac{1+z^{2}}{1-z^{2}} \frac{h(i z)}{i}$ for some $h \in \mathrm{~T}_{M}^{(2)}$.
Proof. Assume that $f \in \mathrm{~T}^{(2)}$ and $|f(z)| \leq M\left|\frac{z+z^{3}}{1-z^{2}}\right|$. Let $h(i z) \equiv \frac{1-z^{2}}{1+z^{2}} i f(z)$. By Lemma 2, $h \in \mathrm{~T}^{(2)}$. Hence, $f(z) \equiv \frac{1+z^{2}}{1-z^{2}} \frac{h(i z)}{i}$. From the above equality,
we get $\left|\frac{1+z^{2}}{1-z^{2}}\right||h(i z)| \leq M\left|\frac{z+z^{3}}{1-z^{2}}\right|$. Therefore, $|h(i z)| \leq M|z|<M$, that is $h \in \mathrm{~T}_{M}^{(2)}$.

In the further investigation we consider the case when $M \in(0,1)$, i.e. the class

$$
\mathrm{T}_{M, g}=\{f \in \mathrm{~T}:|f(z)| \geq M|g(z)| \text { for } z \in \Delta\}, \quad g \in \mathrm{~T}
$$

Suppose that $g(z)=\frac{z}{\left(1-z^{2}\right)^{2}}$. Since $g(z)=\frac{z}{1-z^{2}} \frac{1}{1-z^{2}}$ and $\operatorname{Re}\left(\frac{1}{1-z^{2}}\right)>0$ for $z \in \Delta$, hence $g \in \mathrm{~T}$. We have also $g^{\prime}(i / \sqrt{3})=0$, and it follows that $g \notin \mathrm{~S}$.
Theorem 4. If $f \in \mathrm{~T}$ and $|f(z)| \geq M\left|\frac{z}{\frac{z}{\left(1-z^{2}\right)^{2}}}\right|$ for all $z \in \Delta, M \in(0,1)$ (i.e. $f \in \mathrm{~T}_{M, g}$ where $g(z)=\frac{z}{\left(1-z^{2}\right)^{2}}$), then $f(z) \equiv \frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{h(z)}$ for some $h \in \mathrm{~T}_{1 / M}$.
Proof. Let $f \in \mathrm{~T}$ and $|f(z)| \geq M\left|\frac{z}{\left(1-z^{2}\right)^{2}}\right|$. By Lemma 3, the function h given by $h(z) \equiv \frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{f(z)}$ belongs to T. So $f(z) \equiv \frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{h(z)}$. From the second assumption, we have $\left|\frac{z^{2}}{\left(1-z^{2}\right)^{2}}\right| \frac{1}{|h(z)|} \geq M\left|\frac{z}{\left(1-z^{2}\right)^{2}}\right|$ i.e. $|h(z)| \leq$ $|z| / M<1 / M$. Hence, $h \in \mathrm{~T}_{1 / M}$ and the proof is complete.

Analogously, using Lemma 4, we prove the following theorem:
Theorem 5. If $f \in \mathrm{~T}^{(2)}$ and $|f(z)| \geq M\left|\frac{z}{\left(1-z^{2}\right)^{2}}\right|$ for all $z \in \Delta, M \in(0,1)$ (i.e. $f \in \mathrm{~T}_{M, g}^{(2)}$ where $g(z)=\frac{z}{\left(1-z^{2}\right)^{2}}$, then $f(z) \equiv \frac{z^{2}}{\left(1-z^{2}\right)^{2}} \frac{1}{h(z)}$ for some $h \in \mathrm{~T}_{1 / M}^{(2)}$.

Now, let us consider the function $g(z)=\frac{z}{\left(1-z^{2}\right)(1-z)}$. Clearly, $g(z)=$ $\frac{z}{1-z^{2}} \frac{1}{1-z}$ and $\operatorname{Re}\left(\frac{1}{1-z}\right)>0$ for $z \in \Delta$, so $g \in \mathrm{~T}$. We have also

$$
g^{\prime}((i \sqrt{7}-1) / 4)=0
$$

which means that $g \notin \mathrm{~S}$.
Theorem 6. If $f \in \mathrm{~T}$ and $|f(z)| \geq M\left|\frac{z}{\left(1-z^{2}\right)(1-z)}\right|$ for all $z \in \Delta, M \in(0,1)$ (i.e. $f \in \mathrm{~T}_{M, g}$ where $\left.g(z)=\frac{z}{\left(1-z^{2}\right)(1-z)}\right)$, then $f\left(z^{2}\right) \equiv \frac{z^{3}}{\left(1-z^{4}\right)\left(1-z^{2}\right)} \frac{1}{h(z)}$ for some $h \in \mathrm{~T}_{1 / M}^{(2)}$.
Proof. Suppose that $f \in \mathrm{~T}$ and $|f(z)| \geq M\left|\frac{z}{\left(1-z^{2}\right)(1-z)}\right|$. By Lemma 5 , the function $h(z) \equiv \frac{z^{3}}{\left(1-z^{4}\right)\left(1-z^{2}\right)} \frac{1}{f\left(z^{2}\right)}$ is in $\mathrm{T}^{(2)}$. Hence, $f\left(z^{2}\right) \equiv \frac{z^{3}}{\left(1-z^{4}\right)\left(1-z^{2}\right)} \frac{1}{h(z)}$. From the second assumption, we get $\left|\frac{z^{3}}{\left(1-z^{4}\right)\left(1-z^{2}\right)}\right| \frac{1}{|h(z)|} \geq M\left|\frac{z^{2}}{\left(1-z^{4}\right)\left(1-z^{2}\right)}\right|$,
so $|h(z)| \leq|z| / M<1 / M$. This means that $h \in \mathrm{~T}_{1 / M}^{(2)}$, so we have the desired result.

Now let us study the function $g(z)=\frac{z}{1-z^{4}}$. Because $g(z)=\frac{z}{1-z^{2}} \frac{1}{1+z^{2}}$ and $\operatorname{Re}\left(\frac{1}{1+z^{2}}\right)>0$ for $z \in \Delta$, so $g \in \mathrm{~T}$. Moreover, $g \in \mathrm{~T}^{(2)}$ and $g \notin \mathrm{~S}$, because $g^{\prime}((i+1) / \sqrt[4]{12})=0$.

Theorem 7. If $f \in \mathrm{~T}^{(2)}$ and $|f(z)| \geq M\left|\frac{z}{1-z^{4}}\right|$ for all $z \in \Delta, M \in(0,1)$ (i.e. $f \in \mathrm{~T}_{M, g}^{(2)}$ where $g(z)=\frac{z}{1-z^{4}}$), then $f(i z) \equiv \frac{z^{2}}{1-z^{4}} \frac{i}{h(z)}$ for some $h \in$ $\mathrm{T}_{1 / M}^{(2)}$.
Proof. Let $f \in \mathrm{~T}^{(2)}$ and $|f(z)| \geq M\left|\frac{z}{1-z^{4}}\right|$. By Lemma 6, the function $h(z) \equiv \frac{z^{2}}{1-z^{4}} \frac{i}{f(i z)}$ belongs to $\mathrm{T}^{(2)}$. So $f(i z) \equiv \frac{z^{2}}{1-z^{4}} \frac{i}{h(z)}$. From the second assumption, we have $\left|\frac{z^{2}}{1-z^{4}}\right| \frac{1}{|h(z)|} \geq M\left|\frac{i z}{1-z^{4}}\right|$ i.e. $|h(z)| \leq|z| / M<1 / M$. Therefore, $h \in \mathrm{~T}_{1 / M}^{(2)}$ and the proof is complete.

The converses to Theorems 1-7 are also true.

References

[1] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
[2] Goodman, A. W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.
[3] Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae CurieSkłodowska Sect. A 52 (2) (1998), 95-101.
[4] Koczan, L., Szapiel, W., Extremal problems in some classes of measures (IV). Typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 55-68.
[5] Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 103-112.
[6] Rogosinski, W. W., Über positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, Math. Z. 35 (1932), 93-121 (German).

Leopold Koczan
 Department of Applied Mathematics Lublin University of Technology
 ul. Nadbystrzycka 38D
 20-618 Lublin
 Poland

Katarzyna Trąbka-Więcław
Department of Applied Mathematics
Lublin University of Technology
ul. Nadbystrzycka 38D
20-618 Lublin
Poland
e-mail: k.trabka@pollub.pl

[^0]: 2000 Mathematics Subject Classification. Primary 30C45. Secondary 30C80, 30C99. Key words and phrases. Typically real functions, majorization, subordination.

