ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
 LUBLIN - POLONIA

An integral operator on the classes $\mathcal{S}^{*}(\alpha)$ and $\mathcal{C} \mathcal{V} \mathcal{H}(\beta)$

Abstract

The purpose of this paper is to study some properties related to convexity order and coefficients estimation for a general integral operator. We find the convexity order for this operator, using the analytic functions from the class of starlike functions of order α and from the class $\mathcal{C V H}(\beta)$ and also we estimate the first two coefficients for functions obtained by this operator applied on the class $\mathcal{C} \mathcal{V} \mathcal{H}(\beta)$.

1. Preliminary and definitions. We consider the class of analytic functions $f(z)$, in the open unit disk, $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$, having the form:

$$
\begin{equation*}
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, \quad z \in \mathcal{U} \tag{1.1}
\end{equation*}
$$

This class is denoted by \mathcal{A}. By \mathcal{S} we denote the class of all functions from \mathcal{A} which are univalent in \mathcal{U}.

We denote by $\mathcal{K}(\alpha)$ the class of all convex functions of order $\alpha(0 \leq \alpha<1)$ that satisfy the inequality:

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>\alpha, \quad z \in \mathcal{U} .
$$

[^0]A function $f \in \mathcal{A}$ is in the class $\mathcal{S}^{*}(\alpha)$, of starlike functions of order α if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in \mathcal{U}
$$

These classes were introduced by Robertson in [4] and studied by many other authors.

We also consider the class $\mathcal{C V H}(\beta)$ which was introduced by Acu and Owa in [1]. An analytic function f is in the class $\mathcal{C} \mathcal{H}(\beta)$ with $\beta>0$ if we have the following inequality:

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-2 \beta(\sqrt{2}-1)+1\right|<\operatorname{Re}\left(\sqrt{2} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+2 \beta(\sqrt{2}-1)+\sqrt{2}, \tag{1.2}
\end{equation*}
$$

where $z \in \mathcal{U}$.
Remark 1. This class is well defined for $\operatorname{Re}\left(\sqrt{2} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>2 \beta(1-\sqrt{2})-\sqrt{2}$.
For this class the following result was proved by Acu and Owa in [1].
Theorem 1.1. If $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$ belongs to the class $\mathcal{C V H}(\beta), \beta>0$, then

$$
\left|a_{2}\right| \leq \frac{1+4 \beta}{2(1+2 \beta)},\left|a_{3}\right| \leq \frac{(1+4 \beta)\left(3+16 \beta+24 \beta^{2}\right)}{12(1+2 \beta)^{3}}
$$

For the analytic functions f_{i} and g_{i} we consider the operator

$$
\begin{equation*}
K(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(g_{i}^{\prime}(t)\right)^{\eta_{i}} \cdot\left(\frac{f_{i}(t)}{t}\right)^{\gamma_{i}} d t \tag{1.3}
\end{equation*}
$$

for $\gamma_{i}, \eta_{i}>0$ with $i=\overline{1, n}$. This operator was studied by Pescar in [3] and Ularu in [5].

We study the properties of this operator on the classes $\mathcal{C V H}(\beta)$ and $\mathcal{S}^{*}(\alpha)$. The idea of this paper was given by an open problem considered by N. Breaz, D. Breaz and Acu in [2].
2. Main results. Let

$$
\phi=1-\sum_{i=1}^{n} \eta_{i}-(2-\sqrt{2}) \sum_{i=1}^{n} \eta_{i} \beta_{i}+\sum_{i=1}^{n} \gamma_{i}\left(\alpha_{i}-1\right),
$$

where $\beta_{i}>0, \alpha_{i} \in[0,1)$ and $\eta_{i}, \gamma_{i}>0$ for all $i=\overline{1, n}$. For

$$
\begin{equation*}
\sum_{i=1}^{n} \eta_{i}+(2-\sqrt{2}) \sum_{i=1}^{n} \eta_{i} \beta_{i}+\sum_{i=1}^{n} \gamma_{i}\left(\alpha_{i}-1\right) \leq 1 \tag{2.1}
\end{equation*}
$$

we have that $0 \leq \phi<1$.

Theorem 2.1. If $f_{i} \in \mathcal{S}^{*}\left(\alpha_{i}\right)$ and $g_{i} \in \mathcal{C} \mathcal{V H}\left(\beta_{i}\right)$, with $\beta_{i}>0,0 \leq \alpha_{i}<1$ and $\eta_{i}, \gamma_{i}>0$ for all $i=\overline{1, n}$ satisfying the condition (2.1), then the integral operator $K(z)$ defined by (1.3) is in the class $\mathcal{K}(\phi), 0 \leq \phi<1$ where

$$
\phi=1-\sum_{i=1}^{n} \eta_{i}-(2-\sqrt{2}) \sum_{i=1}^{n} \eta_{i} \beta_{i}+\sum_{i=1}^{n} \gamma_{i}\left(\alpha_{i}-1\right) .
$$

Proof. From the definition of $K(z)$ we obtain:

$$
\frac{z K^{\prime \prime}(z)}{K^{\prime}(z)}=\sum_{i=1}^{n}\left(\eta_{i} \frac{z g_{i}^{\prime \prime}(z)}{g_{i}^{\prime}(z)}\right)+\sum_{i=1}^{n}\left[\gamma_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)\right] .
$$

Further we have:

$$
\begin{aligned}
\sqrt{2} \operatorname{Re}\left(\frac{z K^{\prime \prime}(z)}{K^{\prime}(z)}+1\right)= & \operatorname{Re} \sum_{i=1}^{n} \sqrt{2} \eta_{i} \frac{z g_{i}^{\prime \prime}(z)}{g_{i}^{\prime}(z)} \\
& +\sqrt{2}+\sqrt{2} \operatorname{Re} \sum_{i=1}^{n} \gamma_{i} \frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-\sqrt{2} \operatorname{Re} \sum_{i=1}^{n} \gamma_{i} .
\end{aligned}
$$

We use the fact that f_{i} are starlike functions of order α_{i} and $g_{i} \in \mathcal{C} \mathcal{V} \mathcal{H}\left(\beta_{i}\right)$ for $i=\overline{1, n}$:

$$
\begin{aligned}
\sqrt{2} \operatorname{Re}\left(\frac{z K^{\prime \prime}(z)}{K^{\prime}(z)}+1\right)> & \sum_{i=1}^{n} \eta_{i}\left|\frac{z g_{i}^{\prime \prime}(z)}{g_{i}^{\prime}(z)}-2 \beta_{i}(\sqrt{2}-1)+1\right| \\
& -\sum_{i=1}^{n}\left(2 \eta_{i} \beta_{i}(\sqrt{2}-1)+\eta_{i} \sqrt{2}\right)+\sqrt{2} \\
& +\sqrt{2} \sum_{i=1}^{n} \gamma_{i} \alpha_{i}-\sqrt{2} \sum_{i=1}^{n} \gamma_{i} \\
> & -\sqrt{2} \sum_{i=1}^{n} \eta_{i}-2(\sqrt{2}-1) \sum_{i=1}^{n} \eta_{i} \beta_{i}+\sqrt{2} \\
& +\sqrt{2} \sum_{i=1}^{n} \gamma_{i} \alpha_{i}-\sqrt{2} \sum_{i=1}^{n} \gamma_{i}
\end{aligned}
$$

From these inequalities we obtain that:

$$
\operatorname{Re}\left(\frac{z K^{\prime \prime}(z)}{K^{\prime}(z)}+1\right)>1-\sum_{i=1}^{n} \eta_{i}-(2-\sqrt{2}) \sum_{i=1}^{n} \eta_{i} \beta_{i}+\sum_{i=1}^{n} \gamma_{i}\left(\alpha_{i}-1\right) .
$$

So we obtain the convexity order for the operator $K(z)$ for functions in the classes $\mathcal{S}^{*}\left(\alpha_{i}\right)$ and $\mathcal{C V H}\left(\beta_{i}\right)$ for $i=\overline{1, n}$.

For $\eta_{1}=\eta_{2}=\cdots=\eta_{n}=1$ and $\gamma_{1}=\gamma_{2}=\cdots=\gamma_{n}=1$ in the definition of $K(z)$ given by (1.3) we obtain:

$$
K_{1}(z)=\int_{0}^{z} \prod_{i=1}^{n} g_{i}^{\prime}(t) \cdot \frac{f_{i}(t)}{t} d t
$$

for $i=\overline{1, n}$.
Corollary 2.2. If $f_{i} \in \mathcal{S}^{*}\left(\alpha_{i}\right)$ and $g_{i} \in \mathcal{C} \mathcal{V H}\left(\beta_{i}\right)$, for $\beta_{i}>0,0 \leq \alpha_{i}<1$ for all $i=\overline{1, n}$, then the integral operator

$$
K_{1}(z)=\int_{0}^{z} \prod_{i=1}^{n} g_{i}^{\prime}(t) \cdot \frac{f_{i}(t)}{t} d t
$$

is convex of order ϕ, where

$$
\phi=1-n-(2-\sqrt{2}) \sum_{i=1}^{n} \beta_{i}+\sum_{i=1}^{n}\left(\alpha_{i}-1\right)
$$

for $0 \leq \phi<1$.
Next we will obtain the estimation for the coefficients of the operator $K_{1}(z)$ defined above.

Theorem 2.3. Let $f_{i} \in \mathcal{C} \mathcal{V H}\left(\gamma_{i}\right), g_{i} \in \mathcal{C} \mathcal{V H}\left(\beta_{i}\right)$, with $\beta_{i}, \gamma_{i}>0$ and $g_{i}(z)=$ $z+\sum_{j=2}^{\infty} a_{i, j} z^{j}, f_{i}(z)=z+\sum_{j=2}^{\infty} b_{i, j} z^{j}$ for all $i=\overline{1, n}$. If $K_{1}(z)=z+$ $\sum_{j=2}^{\infty} c_{j} z^{j}$, then we obtain:

$$
\left|c_{2}\right| \leq \frac{1}{2}\left(\sum_{i=1}^{n} \frac{1+4 \gamma_{i}}{2\left(1+2 \gamma_{i}\right)}+\sum_{i=1}^{n} \frac{1+4 \beta_{i}}{1+2 \beta_{i}}\right)
$$

and

$$
\begin{aligned}
\left|c_{3}\right| \leq \frac{1}{3}[& \sum_{i=1}^{n} \frac{\left(1+4 \gamma_{i}\right)\left(3+16 \gamma_{i}+24 \gamma_{i}^{2}\right)}{12\left(1+2 \gamma_{i}\right)^{3}} \\
& \left.+\sum_{k=1}^{n-1}\left(\frac{1+4 \gamma_{k}}{2\left(1+2 \gamma_{k}\right)} \sum_{i=k+1}^{n} \frac{1+4 \gamma_{i}}{2\left(1+2 \gamma_{i}\right)}\right)\right] \\
+ & \sum_{i=1}^{n} \frac{\left(1+4 \beta_{i}\right)\left(3+16 \beta_{i}+24 \beta_{i}^{2}\right)}{12\left(1+2 \beta_{i}\right)^{3}} \\
+ & \frac{2}{3}\left[2 \sum_{k=1}^{n-1}\left(\frac{1+4 \beta_{k}}{2\left(1+2 \beta_{k}\right)} \sum_{i=k+1}^{n} \frac{1+4 \beta_{i}}{2\left(1+4 \beta_{i}\right)}\right)\right. \\
& \left.+\left(\sum_{i=1}^{n} \frac{1+4 \beta_{i}}{2\left(1+2 \beta_{i}\right)}\right)\left(\sum_{i=1}^{n} \frac{1+4 \gamma_{i}}{2\left(1+2 \gamma_{i}\right)}\right)\right] .
\end{aligned}
$$

Proof. From the definition of $K_{1}(z)$ we obtain:

$$
K_{1}^{\prime}(z)=\prod_{i=1}^{n} g_{i}^{\prime}(z) \cdot \frac{f_{i}(z)}{z}
$$

and further we get that:

$$
\begin{aligned}
1+\sum_{j=2}^{\infty} j c_{j} z^{j-1}= & \left(1+\sum_{j=2}^{\infty} j a_{1, j} z^{j-1}\right) \ldots\left(1+\sum_{j=2}^{\infty} j a_{n, j} z^{j-1}\right) \\
& \times\left(1+\sum_{j=2}^{\infty} b_{1, j} z^{j-1}\right) \ldots\left(1+\sum_{j=2}^{\infty} b_{n, j} z^{j-1}\right)
\end{aligned}
$$

After some computation from the above relation we obtain:

$$
\begin{equation*}
c_{2}=\frac{1}{2} \sum_{i=1}^{n} b_{i, 2}+\sum_{i=1}^{n} a_{i, 2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
c_{3}= & \frac{1}{3} \sum_{i=1}^{n} b_{i, 3}+\sum_{i=1}^{n} a_{i, 3}+\frac{1}{3} \sum_{k=1}^{n-1}\left(b_{k, 2} \sum_{i=k+1}^{n} b_{i, 2}\right) \tag{2.3}\\
& +\frac{4}{3} \sum_{k=1}^{n-1}\left(a_{k, 2} \sum_{i=k+1}^{n} a_{i, 2}\right)+\frac{2}{3}\left(\sum_{i=1}^{n} a_{i, 2}\right)\left(\sum_{i=1}^{n} b_{i, 2}\right) .
\end{align*}
$$

From Theorem 1.1 we have the following inequalities for the coefficients:

$$
\begin{gathered}
\left|a_{i, 2}\right| \leq \frac{1+4 \beta_{i}}{2\left(1+2 \beta_{i}\right)} \\
\left|a_{i, 3}\right| \leq \frac{\left(1+4 \beta_{i}\right)\left(3+16 \beta_{i}+24 \beta_{i}^{2}\right)}{12\left(1+2 \beta_{i}\right)^{3}}
\end{gathered}
$$

and

$$
\begin{gathered}
\left|b_{i, 2}\right| \leq \frac{1+4 \gamma_{i}}{2\left(1+2 \gamma_{i}\right)} \\
\left|b_{i, 3}\right| \leq \frac{\left(1+4 \gamma_{i}\right)\left(3+16 \gamma_{i}+24 \gamma_{i}^{2}\right)}{12\left(1+2 \gamma_{i}\right)^{3}}
\end{gathered}
$$

for $i=\overline{1, n}$. Now we will use the inequalities in (2.2) and (2.3) and we obtain:

$$
\begin{aligned}
\left|c_{2}\right| & \leq \frac{1}{2} \sum_{i=1}^{n}\left|b_{i, 2}\right|+\sum_{i=1}^{n}\left|a_{i, 2}\right| \\
& \leq \frac{1}{2}\left(\sum_{i=1}^{n} \frac{1+4 \gamma_{i}}{2\left(1+2 \gamma_{i}\right)}+\sum_{i=1}^{n} \frac{1+4 \beta_{i}}{1+2 \beta_{i}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|c_{3}\right| \leq & \frac{1}{3} \sum_{i=1}^{n}\left|b_{i, 3}\right|+\sum_{i=1}^{n}\left|a_{i, 3}\right|+\frac{1}{3} \sum_{k=1}^{n-1}\left(\left|b_{k, 2}\right| \sum_{i=k+1}^{n}\left|b_{i, 2}\right|\right) \\
& +\frac{4}{3} \sum_{k=1}^{n-1}\left(\left|a_{k, 2}\right| \sum_{i=k+1}^{n}\left|a_{i, 2}\right|\right)+\frac{2}{3}\left(\sum_{i=1}^{n}\left|a_{i, 2}\right|\right)\left(\sum_{i=1}^{n}\left|b_{i, 2}\right|\right) \\
\leq & \frac{1}{3}\left[\sum_{i=1}^{n} \frac{\left(1+4 \gamma_{i}\right)\left(3+16 \gamma_{i}+24 \gamma_{i}^{2}\right)}{12\left(1+2 \gamma_{i}\right)^{3}}\right. \\
& \left.+\sum_{k=1}^{n-1}\left(\frac{1+4 \gamma_{k}}{2\left(1+2 \gamma_{k}\right)} \sum_{i=k+1}^{n} \frac{1+4 \gamma_{i}}{2\left(1+2 \gamma_{i}\right)}\right)\right] \\
+ & \sum_{i=1}^{n} \frac{\left(1+4 \beta_{i}\right)\left(3+16 \beta_{i}+24 \beta_{i}^{2}\right)}{12\left(1+2 \beta_{i}\right)^{3}} \\
+ & \frac{2}{3}\left[2 \sum_{k=1}^{n-1}\left(\frac{1+4 \beta_{k}}{2\left(1+2 \beta_{k}\right)} \sum_{i=k+1}^{n} \frac{1+4 \beta_{i}}{2\left(1+4 \beta_{i}\right)}\right)\right. \\
& \left.+\left(\sum_{i=1}^{n} \frac{1+4 \beta_{i}}{2\left(1+2 \beta_{i}\right)}\right)\left(\sum_{i=1}^{n} \frac{1+4 \gamma_{i}}{2\left(1+2 \gamma_{i}\right)}\right)\right]
\end{aligned}
$$

hence the proof is complete.

References

[1] Acu, M., Owa, S., Convex functions associated with some hyperbola, J. Approx. Theory Appl. 1 (1) (2005), 37-40.
[2] Breaz, N., Breaz, D., Acu, M., Some properties for an integral operator on the $\mathcal{C V H}(\beta)$ class, IJOPCA 2 (1) (2010), 53-58.
[3] Pescar, V., The univalence of an integral operator, Gen. Math. 19 (4) (2011), 69-74.
[4] Robertson, M. S., Certain classes of starlike functions, Michigan Math. J. 76 (1) (1954), 755-758.
[5] Ularu, N., Convexity properties for an integral operator, Acta Univ. Apulensis Math. Inform. 27 (2011), 115-120.

Nicoleta Ularu
University of Piteşti
Târgul din Vale Str., No. 1
110040 Piteşti, Argeş
Romania
e-mail: nicoletaularu@yahoo.com

Nicoleta Breaz
"1 Decembrie 1918" University of Alba Iulia N. Iorga Str., No. 11-13

510009 Alba Iulia, Alba
Romania
e-mail: nbreaz@uab.ro

Received September 7, 2012

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic function, integral operator, starlike function, convex function, coefficients estimation.

