
doi: 10.17951/a.2021.75.2.93-107

ANNALES
U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A

L U B L I N – P O L O N I A

VOL. LXXV, NO. 2, 2021 SECTIO A 93–107

MACIEJ PAROL and DARIUSZ PARTYKA

Contribution to the Hadamard
multiplication theorem

Abstract. In this article we define a binary linear operator T for holomor-
phic functions in given open sets A and B in the complex plane under certain
additional assumptions. It coincides with the classical Hadamard product of
holomorphic functions in the case where A and B are the unit disk. We show
that the operator T exists provided A and B are simply connected domains
containing the origin. Moreover, T is determined explicitly by means of an
integral form. To this aim we prove an alternative representation of the star
product A ∗B of any sets A,B ⊂ C containing the origin. We also touch the
problem of holomorphic extensibility of Hadamard product.

1. Introduction. Let Hol(Ω) denote the class of all holomorphic functions
in an open set Ω. Here and later on, we assume that all topological notions
refer to the extended complex plane E(Ĉ) := (Ĉ, ρ), where ρ is the chordal
metric. For any a ∈ C and r > 0 we set D(a, r) := {z ∈ C : |z− a| < r} and
D(a, r) := {z ∈ C : |z − a| ≤ r}. In particular D := D(0, 1) is the unit disk
and D := D(0, 1) is the closed unit disk. The Hadamard product of functions
f and g holomorphic in a certain neighbourhood of the origin is given by
the formula

(1.1) D(0, Rf,g) 3 z 7→ f ∗ g(z) :=

+∞∑
n=0

f (n)(0)g(n)(0)

(n!)2
zn,
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where

(1.2) Rf,g :=

(
lim sup
n→+∞

n

√
|f (n)(0)|

n!
· |g

(n)(0)|
n!

)−1

;

see e.g. [2], [3]. For example, using the formulas (1.1) and (1.2) for the
functions C\{1} 3 z 7→ f(z) := 1/(1−z) and g := f we compute f ∗g = f |D.
On the other hand the Hadamard product f ∗g has a holomorphic extension
to the function f . This means that in certain cases the Hadamard product
f ∗ g can be extended holomorphically outside the disk D(0, Rf,g). Thus for
given domains A ⊂ C and B ⊂ C containing the origin we seek domains Ω
such that for all f ∈ Hol(A) and g ∈ Hol(B) the Hadamard product f ∗ g
has a holomorphic extension to a domain containing Ω. To specify this issue
write

(1.3) ρ(D) := sup({r ≥ 0 : D(0, r) ⊂ D})
for a set D ⊂ C containing 0. Notice that for all domains A ⊂ C and B ⊂ C
containing the origin,

(1.4) ρ(A)ρ(B) ≤ Rf,g, f ∈ Hol(A), g ∈ Hol(B).

Given domains A ⊂ C and B ⊂ C containing the origin we consider the class
H1(A,B) of all domains Ω ⊂ C such that D := D(0, ρ(A)ρ(A)) ⊂ Ω and
for all f ∈ Hol(A) and g ∈ Hol(B) there exists h ∈ Hol(Ω) which coincides
with f ∗ g in D, i.e.,

(1.5) h(z) = f ∗ g(z), z ∈ D(0, ρ(A)ρ(B)).

In other words the function (f ∗ g)|D has a holomorphic extension h to
each Ω ∈ H1(A,B). Thus for each Ω ∈ H1(A,B) and a domain Ω′, if
D(0, ρ(A)ρ(B)) ⊂ Ω′ ⊂ Ω, then Ω′ ∈ H1(A,B). Therefore we can ask about
the maximal Ω ∈ H1(A,B) in the sense of inclusion. It is easy to find an
upper bound of the class H1(A,B). Fix u ∈ C \A and v ∈ C \B. Setting

C \ {u} 3 z 7→ f(z) :=
1

1− z
u

and C \ {v} 3 z 7→ g(z) :=
1

1− z
v

we see that f ∈ Hol(A) and g ∈ Hol(B). Moreover,

f(z) =
+∞∑
n=0

1

un
zn, z ∈ D(0, |u|) and g(z) =

+∞∑
n=0

1

vn
zn, z ∈ D(0, |v|),

from which

f ∗ g(z) =
+∞∑
n=0

1

(uv)n
zn =

1

1− z
uv

, z ∈ D(0, |uv|).

Thus uv /∈ Ω for Ω ∈ H1(A,B), and consequently,

(1.6) (Ĉ \A) · (Ĉ \B) ⊂ Ĉ \ Ω, Ω ∈ H1(A,B),
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where

X · Y :=
{
xy : x ∈ X and y ∈ Y and

(
x 6= 0 6= y or x 6=∞ 6= y)

}
for all nonempty sets X,Y ⊂ Ĉ. We put here c · ∞ := ∞ and ∞ · c := ∞
for c ∈ Ĉ \ {0}. Additionally we set ∅ ·X := ∅ and X · ∅ := ∅. Setting for
all sets X,Y ⊂ Ĉ,

X{ := Ĉ \X and X ∗ Y := (X{ · Y {){

we can rewrite the condition (1.6) as follows

(1.7) Ω ⊂ A ∗B := (A{ ·B{){, Ω ∈ H1(A,B).

In this manner the binary operation ∗ was defined on the class 2Ĉ. The set
A ∗ B is usually called the star product of the sets A,B ⊂ Ĉ. For example
for all r1, r2 > 0 we have

(1.8) D(0, r1) ∗ D(0, r2) = D(0, r1r2).

Since Ω ∈ H1(A,B) is a connected set we deduce from (1.7) that

(1.9) Ω ⊂ CC0(A ∗B), Ω ∈ H1(A,B),

where CCz(X) denotes the connected component of a set X ⊂ Ĉ containing
z, i.e.

CCz(X) :=
⋃
V ∈Fz

V,

where
Fz :=

{
V ∈ 2Ĉ : z ∈ V ⊂ X and V is connected

}
.

The problem of holomorphic extending of (f ∗ g)|D to domains depending
on A and B only is fairly old; cf. [3]. Recently, the problem was studied
by Grosse-Erdmann in [1], Lorson in [6] and [7] as well as by Müller and
Pohlen in [9]. The natural question is whether the equality can appear in
the inclusion (1.9). The final solution to this problem was given in 1992
by Müller. He proved in [8] that for all domains A and B containing 0,
CC0(A∗B) ∈ H1(A,B), i.e., CC0(A∗B) is the maximal domain inH1(A,B)
in the sense of inclusion. He called this result Hadamard Multiplication
Theorem. If domains A and B are simply connected, then the extension
h of (f ∗ g)|D can be characterized in a more constructive way given in
Corollary 3.2. This is a conclusion from Theorem 3.1, which deals with the
following concept of generalization of the Hadamard product operator ∗.
Given non-empty open sets A,B ⊂ C we denote by H2(A,B) the class of all
open sets Ω ⊂ C such that there exists an operator T : Hol(A)×Hol(B)→
Hol(Ω) satisfying the following conditions:

(1.10) T (f, g) = f ∗ g for all polynomials f and g;
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(1.11) For all sequences N 3 n 7→ fn ∈ Hol(A) and N 3 n 7→ gn ∈ Hol(B)

and all f ∈ Hol(A) and g ∈ Hol(B), if fn
ucc−−→ f in A as n → +∞

and gn
ucc−−→ g in B as n → +∞, then T (fn, gn)

ucc−−→ T (f, g) in Ω as
n→ +∞.

Here and later on the symbol ucc−−→ stands for the uniform convergence on
compact sets. For example

(1.12) Ω := D(0, r1r2) ∈ H2(D(0, r1),D(0, r2)), r1, r2 > 0.

To prove this property notice that for given r1, r2 > 0 we deduce from (1.2)
that Rf,g ≥ r1r2 for all f ∈ Hol(D(0, r1)) and g ∈ Hol(D(0, r2)). Then
Ω ⊂ D(0, Rf,g), and setting

Hol(D(0, r1))×Hol(D(0, r2)) 3 (f, g) 7→ T (f, g) := f ∗ g
we conclude from (1.1) that T (f, g) ∈ Hol(Ω) for all f ∈ Hol(D(0, r1)) and
g ∈ Hol(D(0, r2)) and the condition (1.10) holds. The second condition can
be derived from the representation of the Hadamard product by the integral
formula (1.13), called the Parseval integral ; cf. [3, p. 84]. To be more specific
the following theorem holds.

Theorem A. For all f, g ∈ Hol(D) and z ∈ D the equality

(1.13) f ∗ g(z) =
1

2πi

∫
T+(0,r)

f(u)g
( z
u

) du

u

holds for r ∈ (|z|; 1), where [0; 2π] 3 t 7→ T+(a, r)(t) := a + reit for any
a ∈ C and r > 0.

We can adopt the integral (1.13) to our case by scaling the unit disk D to
the disks D(0, r1) and D(0, r2), respectively. Then passing to the limit under
the integral leads to the condition (1.11), and consequently the property
(1.12) is true. Thus in general case of non-empty domains A,B ⊂ C the
operator T can be naturally interpreted as a generalization of the Hadamard
product operator ∗. We show that such an operator exists for any simply
connected domains A,B ⊂ C containing the origin and T (f, g) ∈ Hol(A ∗
B) for all f ∈ Hol(A) and g ∈ Hol(B). Moreover, the operator can be
expressed explicitly with an integral formula similar to (1.13); see also [1,
Theorem 3.4]. This is stated in Theorem 3.1, which is our main result.
The proof of Theorem 3.1 appeals to several auxiliary facts proved in the
second section. Theorem 2.1 is of special interest here, because it provides
an alternative characterization of the product A ∗B for any sets A,B ⊂ Ĉ.

It is worth noting that the considerations presented in the remaining
part of our paper deal with the very simple case of the operator T satisfying
the condition (1.10). They are also applicable to the situation where the
Hadamard product in the condition (1.10) is replaced by a more general
binary linear form. However, this subject will be developed elsewhere.

The authors would like to thank the reviewer for his helpful comments.
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2. Auxiliary results. In this section we gather several facts required in
the proof of Theorem 3.1, which is our main result.

Theorem 2.1. For all sets A,B ⊂ C containing the origin the equality

(2.1) A ∗B =
{
z ∈ C \ {0} : Ĉ = A ∪ z

B

}
∪ {0}

holds.

Proof. Fix sets A,B ⊂ C containing 0 and fix z ∈ Ĉ. Suppose that

z ∈
{
ζ ∈ C \ {0} : Ĉ = A ∪ ζ

B

}
.

Then z ∈ C \ {0} and

A ∪ z

B
= Ĉ,

which is equivalent to
A{ ∩ z

B{
= ∅.

Then for all a ∈ A{ and b ∈ B{, a 6= z/b, and so z 6= ab. Therefore
z /∈ A{ ·B{, which gives z ∈ A ∗B. This proves the following inclusion

(2.2)
{
ζ ∈ C \ {0} : Ĉ = A ∪ ζ

B

}
⊂ A ∗B \ {0}.

To show the inverse inclusion to (2.2) suppose that

z /∈
{
ζ ∈ C \ {0} : Ĉ = A ∪ ζ

B

}
.

If z ∈ {0,∞}, then z /∈ A ∗ B \ {0}, because A ∪ B ⊂ C. Otherwise,
z ∈ C \ {0} and

A ∪ z

B
6= Ĉ,

which gives
A{ ∩ z

B{
6= ∅.

Hence there exists w ∈ C \ {0} such that w ∈ A{ ∩ z/B{. This means
that w ∈ A{ and z/w ∈ B{. Therefore z = w · (z/w) ∈ A{ · B{, and so
z /∈ A∗B \{0}. Using now the law of contraposition we obtain the inclusion
inverse to (2.2). Both the inclusions yield the equality (2.1), because 0 ∈
A ∗B. �

Example 2.2. Let A := B := {z ∈ C : Re(z) < 1}. Then

z

B
= Ĉ \ D

(z
2
,
|z|
2

)
.

Then by Theorem 2.1 we see that for every z ∈ C, z ∈ A ∗B if and only if

Re

(
z

2
+
|z|
2

)
< 1,
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and this inequality is equivalent to

Re(z) < 1− 1

4
(Im(z))2.

Therefore
A ∗B =

{
z ∈ C : Re(z) < 1− 1

4
(Im(z))2

}
.

Now we quote a classical statement formulated by Zygmunt Janiszewski;
see [4, p. 506, Theorem 5].

Theorem B. Let A and B be two open sets or two closed sets. If A, B are
connected and the set A∩B is disconnected, then the set A∪B separates a
certain pair of points p, q ∈ Ĉ, i.e. p and q belong to different components
of the set (A ∪B){.

Using Theorem B, we can prove the following lemma.

Lemma 2.3. Let Ω1 and Ω2 be simply connected domains such that 0 ∈ Ω{1,
∞ ∈ Ω{2 and Ω1 ∪ Ω2 = Ĉ. Then Ω1 ∩ Ω2 is a 2-connected domain whose
complement (Ω1 ∩ Ω2){ has closed connected components Ω{1 and Ω{2.

Proof. Under the assumption of the lemma suppose that Ω1 ∩ Ω2 is a
disconnected set. Since the sets Ω1 and Ω2 are open and connected, we
deduce from Theorem B that the set Ω1 ∪ Ω2 separates a certain pair of
points p, q ∈ Ĉ. This is impossible, because Ω1∪Ω2 = Ĉ. Therefore Ω1∩Ω2

is a connected set. Hence Ω1 ∩Ω2 is a domain, because Ω1 and Ω2 are open
sets. Note that the complement sets Ω{1 and Ω{2 are closed and

Ω{1 ∩ Ω{2 = (Ω1 ∪ Ω2){ = ∅.

Since E(Ĉ) is a normal space, there exist open sets U1 and U2 such that

0 ∈ Ω{1 ⊂ U1, ∞ ∈ Ω{2 ⊂ U2 and U1 ∩ U2 = ∅.

Therefore Ω{1 ∪ Ω{2 is a disconnected set. Since Ω1 and Ω2 are simply con-
nected domains, Ω{1 and Ω{2 are connected sets. Moreover, (Ω1 ∩ Ω2){ =

Ω{1∪Ω{2. Thus the set (Ω1∩Ω2){ has exactly two connected components Ω{1
and Ω{2, which proves the lemma. �

From Lemma 2.3 we derive the following result.

Lemma 2.4. For all simply connected domains A,B ⊂ C, if 0 ∈ A ∩ B,
then for every z ∈ A∗B\{0} the set A∩z/B is a 2-connected domain as well
as the sets A \ (z/B) and A{ are closed components of the set (A∩ (z/B)){

and 0 ∈ A \ (z/B).

Proof. Fix simply connected domains A,B ⊂ C such that 0 ∈ A∩B. Then
for a given z ∈ A∗B \{0} we conclude from Theorem 2.1 that A∪z/B = Ĉ.
Moreover, the set z/B is a simply connected domain as well as ∞ ∈ A{
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and 0 ∈ (z/B){. Using Lemma 2.3 with Ω1 := A and Ω2 := z/B, we see
that A ∩ z/B is a 2-connected domain and the set (A ∩ (z/B)){ has closed
connected components A{ and (z/B){. Moreover, 0 ∈ A \ (z/B) and

(z/B){ = Ĉ ∩ (z/B){ = (A ∪ z/B) ∩ (z/B){ = A ∩ (z/B){ = A \ (z/B),

which is our claim. �

Lemma 2.5. For all open sets A and B, if 0 ∈ A ∩ B, then the set A ∗ B
is open.

Proof. Given open sets A,B ⊂ Ĉ assume that 0 ∈ A ∩ B. Let z be an
accumulation point of A{ · B{. Then zn → z as n → +∞ for a certain
sequence N 3 n 7→ zn ∈ A{ ·B{. Hence there exist sequences N 3 n 7→ an ∈
A{ and N 3 n 7→ bn ∈ B{ such that zn = anbn for n ∈ N. Since A{ and B{

are compact sets, there exist a ∈ A{ and b ∈ B{ and an increasing function
σ : N → N, such that aσ(n) → a and bσ(n) → b as n → +∞. Since a 6= 0
and b 6= 0, we have

z = lim
n→+∞

zσ(n) = lim
n→+∞

aσ(n)bσ(n) = ab ∈ A{ ·B{.

Thus A{ ·B{ is a closed set, and hence A ∗B is an open set. �

Lemma 2.6. For all nonempty sets Ω ⊂ Ĉ and K ⊂ C \ {0}, if Ω is open
and K is closed, then the set

(2.3) ΩK :=
{
z ∈ C \ {0} : K ⊂ z

Ω

}
is open.

Proof. For arbitrarily fixed non-empty sets Ω ⊂ C and K ⊂ C\{0} we will
prove that the set Ω{K is closed. From the formula (2.3) it follows that

(2.4) Ω{K =
{
z ∈ C \ {0} : K ∩ z

Ω{
6= ∅
}
∪ {0,∞}.

If Ω{K = {0,∞}, then obviously Ω{K is closed. Therefore we can assume that
Ω{K 6= {0,∞}. Then Ω{K \ {0,∞} 6= ∅. Suppose that z is arbitrarily fixed
adjacent point of the set Ω{K . If z ∈ {0,∞}, then by (2.4), z ∈ Ω{K . Thus
we can constrain ourselves to the case where z ∈ C \ {0}. Then there exists
a sequence N 3 n 7→ zn ∈ Ω{K \ {0,∞} such that zn → z as n → +∞. By
(2.4) there exists a sequence

(2.5) N 3 n 7→ wn ∈ K ∩
zn

Ω{
.

Since K is a closed set in a the compact space E(Ĉ), there exists an increas-
ing sequence σ : N→ N and w ∈ K such that wσ(n) → w as n→ +∞. Since
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K ∩ {0,∞} = ∅, we see that w ∈ C \ {0} and wn ∈ C \ {0} for n ∈ N, and
consequently

(2.6)
zσ(n)

wσ(n)
→ z

w
as n→ +∞.

On the other hand, by (2.5), zn/wn ∈ Ω{ for n ∈ N. Moreover, Ω{ is
closed, because Ω is open. This together with (2.6) gives z/w ∈ Ω{ and, in
consequence, w ∈ z/Ω{. Since w ∈ K, we get w ∈ K ∩ z/Ω{. Hence and by
(2.4), z ∈ Ω{K \ {0,∞}. Thus any adjacent point z of the set Ω{K belongs to
Ω{K , and consequently Ω{K is a closed set. Hence ΩK is an open set, which
is the desired conclusion. �

Lemma 2.7. For any compact sets E,F ⊂ C, E · F is a compact set. If
additionally 0 /∈ F , then E/F is a compact set.

Proof. Fix compact sets E,F ⊂ C. For any sequence N 3 n 7→ zn ∈ E · F
there exist sequences N 3 n 7→ un ∈ E and N 3 n 7→ vn ∈ F such that
zn = unvn for n ∈ N. Since E and F are compact, there exist an increasing
function σ : N → N, u ∈ E and v ∈ F such that uσ(n) → u and vσ(n) → v
as n→ +∞. Hence

zσ(n) = uσ(n) · vσ(n) → u · v ∈ E · F as n→ +∞,

and in a consequence E · F is compact. Now assume that 0 /∈ F . Then
the set 1/F is compact as the image of the compact set F by a continuous
function. Since E/F = E · 1/F , we see from the already proved part of the
lemma that E/F is a compact set, which completes the proof. �

3. Main results. For any set Ω ⊂ C we define the class P(Ω) of all piece-
wise smooth functions γ : [0; 2π]→ Ω satisfying γ(0) = γ(2π), i.e., P(Ω) is
the class of all closed paths in Ω. Within the class P(Ω) we distinguish the
subclass

(3.1) P0(Ω) := {γ ∈ P(Ω \ {0}) : indγ(0) = 1},

where indγ(a) denotes the index of γ with respect to a ∈ C.

Theorem 3.1. Let A,B ⊂ C be simply connected domains such that 0 ∈
A∩B. Then A ∗B is an open set and there exists an operator T : Hol(A)×
Hol(B)→ Hol(A ∗B) such that for all f ∈ Hol(A) and g ∈ Hol(B),

(3.2) T (f, g)(z) =
1

2πi

∫
γ
f(u)g

( z
u

) du

u
, z ∈ A∗B\{0}, γ ∈ P0

(
A∩ z

B

)
.

In particular, the operator T satisfies the conditions (1.10) and (1.11), i.e.,
A ∗B ∈ H2(A,B).
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Proof. Fix A, B, f , g satisfying the assumptions and z ∈ Ω \ {0}, where
Ω := A ∗B. By Lemma 2.5, Ω is an open set. Since B is simply connected,
it follows that z/B is simply connected. Moreover ∞ ∈ A{, 0 ∈ (z/B){ and
A ∪ (z/B) = Ĉ, by Theorem 2.1. Using Lemma 2.4 we see that A ∩ (z/B)

is a 2-connected domain and the set (A ∩ (z/B)){ has closed components
A \ (z/B) and A{ containing 0 and ∞, respectively. Since 0 ∈ B, we see
that D(0, 2r) ⊂ B for a certain r > 0, and so

T
(

0,
|z|
r

)
⊂ z

B
.

If A = C then

T
(

0,
|z|
r

)
⊂ A ∩ z

B
,

and setting Ωζ := A ∩ (ζ/B) for ζ ∈ C \ {0} and

(3.3) [0; 2π] 3 t 7→ σ(t) :=
|z|
r

eit

we see that σ ∈ P0(Ωz). Otherwise, A ⊂ C 6= A. Then by the Riemann
mapping theorem there exists a conformal mapping Φ of D onto the domain
A such that Φ(0) = 0; cf. [10, Theorem 14.8]. The set A\(z/B) is a compact
set as a closed set in the compact space E(Ĉ). Since⋃

n∈N
Φ
(
D
(

0, 1− 1

n

))
= Φ

(⋃
n∈N

D
(

0, 1− 1

n

))
= Φ(D) = A ⊃ A \ Ωz,

the family
{

Φ(D(0, 1− 1/n)) : n ∈ N
}

is an open cover of A \Ωz. Therefore
there exists a finite set N ⊂ N such that

A \ Ωz ⊂
⋃
n∈N

Φ
(
D
(

0, 1− 1

n

))
= Φ

(
D
(

0, 1− 1

nz

))
,

where nz := max(N). Setting r := 1− 1/(2nz) we see that

Φ (T(0, r)) ⊂ Φ

(
D \ D

(
0, 1− 1

nz

))
= Φ(D) \ Φ

(
D
(

0, 1− 1

nz

))
⊂ A \ (A \ Ωz) = Ωz.

Hence σ ∈ P(Ωz), where

(3.4) [0; 2π] 3 t 7→ σ(t) := Φ
(
reit
)
.

Since Φ is a conformal mapping, we conclude from the residue theorem that

indσ(0) =
1

2πi

∫
σ

du

u
=

1

2πi

∫
T+(0,r)

Φ′(w)

Φ(w)
dw = 1.

Hence σ ∈ P0(Ωz), and so in both the cases (A = C or A 6= C),

(3.5) P0(Ωz) 6= ∅, z ∈ Ω \ {0}.
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Now we consider the following function

(3.6)
⋃

w∈Ω\{0}

{w} × P0(Ωw) 3 (z, γ) 7→ h(z, γ) :=
1

2πi

∫
γ
Hz(u)du,

where

Ωz 3 u 7→ Hz(u) := f(u)g
( z
u

) 1

u
is a well defined holomorphic function in Ωz. For any fixed γ1, γ2 ∈ P0(Ωz),
Γ := {(γ1, 1), (γ2,−1)} is a cycle in Ωz such that for every a ∈ A \ Ωz,

indΓ(a) = indγ1(a)− indγ2(a) = indγ1(0)− indγ2(0) = 1− 1 = 0

and for every a ∈ C \A,

indΓ(a) = indγ1(a)− indγ2(a) = 0− 0 = 0.

Hence Γ is a cycle homologous to zero with respect to Ωz. Using the ho-
mologous version of Cauchy theorem we conclude that

0 =

∫
Γ
Hz(u)du =

∫
γ1

Hz(u)du−
∫
γ2

Hz(u)du,

which together with (3.6) leads to

h(z, γ1) =
1

2πi

∫
γ1

Hz(u)du =
1

2πi

∫
γ2

Hz(u)du = h(z, γ2).

Therefore the function h is constant with respect to the second argument.
From (3.5) we conlude that there exists a function h : Ω→ C satisfying the
following conditions

(3.7) h(z) = h(z, γ), z ∈ Ω \ {0}, γ ∈ P0(Ωz)

and

(3.8) h(0) = f ∗ g(0).

Now we prove that h ∈ Hol(Ω \ {0}). Setting K := σ([0; 2π]) we see that
K ⊂ C \ {0} and K is closed. Since B is an open set, we conclude from
Lemma 2.6 that the set

(3.9) BK :=

{
ζ ∈ C \ {0} : K ⊂ ζ

B

}
is open. Since σ ∈ P0(Ωz), we have K ⊂ Ωz = A ∩ z/B, and so K ⊂ z/B.
Then by (3.9), z ∈ BK . Thus D(z, η) ⊂ BK for a certain η > 0. This
means that for each w ∈ D(z, η), w ∈ BK , which in view of (3.9) gives
K ⊂ (w/B) ∩A = Ωw. Thus

(3.10) σ ∈ P0(Ωw), w ∈ D(z, η).
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Notice that by (3.7) and (3.6),

h(w) =
1

2πi

∫
σ
f(u)g

(w
u

) du

u

=
1

2πi

∫ 2π

0
f(σ(t))g

(
w

σ(t)

)
σ′(t)

σ(t)
dt, w ∈ D(z, η).

Since the function under the last integral is holomorphic with respect to w,
we see that the function h is differentiable at the point z and

h′(z) =
1

2πi

∫ 2π

0
f(σ(t))g′

(
z

σ(t)

)
σ′(t)

σ(t)2
dt =

1

2πi

∫
σ
f(u)g′

( z
u

) du

u2
;

cf. e.g. [5, Chapter 6, Theorem 5.4]. Thus

(3.11) h ∈ Hol(Ω \ {0}).

By the formula (1.3), D(0, ρ(A)) ⊂ A and D(0, ρ(B)) ⊂ B. Hence and by
(1.8),

(3.12) D(0, ρ(A)ρ(B)) ⊂ Ω.

We still have to prove that

(3.13) h(z) = f ∗ g(z), z ∈ D(0, ρ(A)ρ(B)).

Since 0 ∈ A ∩ B ∩ Ω and the sets A, B, Ω are open, there exists r ∈ (0; 1)
such that D(0, r) ⊂ Ω∩A∩B. Hence f, g ∈ Hol(D(0, r)), and consequently
by Theorem A,

(3.14) f ∗ g(z) =
1

2πi

∫
γ
f(u)g

( z
u

)du

u
, z ∈ D

(
0,
r2

2

)
,

where [0; 2π] 3 t 7→ γ(t) := (r/2)eit. For every z ∈ D(0, r2/2) \ {0},

γ([0; 2π]) = T(0, r/2) ⊂ C \ D(0, |z|/r) ⊂ z/B,

because D(0, r) ⊂ B and |z|/r < r/2. Moreover, γ([0; 2π]) ⊂ D(0, r) ⊂ A
and indγ(0) = 1. Therefore γ ∈ P0(A∩ z/B) = P0(Ωz), and using (3.7) and
(3.6) we obtain

h(z) = h(z, γ) =
1

2πi

∫
γ
f(u)g

( z
u

)du

u
, z ∈ D

(
0,
r2

2

)
\ {0}.

This together with (3.14) gives

(3.15) f ∗ g(z) = h(z), z ∈ D
(

0,
r2

2

)
\ {0}.

Combining this with (3.8) and (3.11) we see that h ∈ Hol(Ω). Moreover,
from (3.15), (3.12) and (1.4) it follows that the equality (3.13) holds. Thus
an operator T : Hol(A) × Hol(B) → Hol(A ∗ B) is well defined by setting
T (f, g) := h, and the equality (3.2) holds.
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It remains to show that the operator T satisfies the conditions (1.10) and
(1.11). Write Zp,q := {n ∈ Z : p ≤ n ≤ q} and Zp := {n ∈ Z : p ≤ n}
for p, q ∈ Z. For any polynomials f and g there exist n ∈ N and sequences
Z0,n 3 k 7→ ak ∈ C and Z0,n 3 k 7→ bk ∈ C such that

f(z) =
n∑
k=0

akz
k and g(z) =

n∑
k=0

bkz
k, z ∈ C.

Then for all z ∈ Ω \ {0} and γ ∈ P0

(
A ∩ z

B

)
we conclude from (3.2) that

T (f, g)(z) =
1

2πi

∫
γ
f(u)g

( z
u

)du

u

=
1

2πi

∫
γ

( n∑
k=0

aku
k
)( n∑

l=0

bl
zl

ul

)du

u

=

n∑
k=0

n∑
l=0

akblz
l

2πi

∫
γ
uk−l−1du

=

n∑
k=0

akbkz
k = f ∗ g(z).

This shows the condition (1.10). Given f ∈ Hol(A), g ∈ Hol(B) and se-
quences N 3 n 7→ fn ∈ Hol(A) and N 3 n 7→ gn ∈ Hol(B) suppose that

(3.16) fn
ucc−−→ f in A and gn

ucc−−→ g in B as n→ +∞.

Let z ∈ Ω\{0} be arbitrarily fixed. We have already proved that there exists
γz ∈ P0(Ωz). Taking into account (3.10) we see that D(z, 2rz) ⊂ Ω \ {0}
and

(3.17) γz ∈ P0(Ωw), w ∈ D(z, 2rz),

for a certain rz > 0. By (3.17), Kz := γz([0; 2π]) ⊂ Ωw = A ∩ w/B for
w ∈ D(z, 2rz). Hence K ′z := D(z, rz)/Kz ⊂ B, and in view of Lemma 2.7
the set K ′z is compact. Since both the sets Kz and K ′z are compact, we
conclude from (3.16) that

sup
u∈Kz

|fn(u)− f(u)| → 0 and sup
u∈K′

z

|gn(u)− g(u)| → 0 as n→ +∞.

Therefore, for a given ε ∈ (0; 1) there exists nε ∈ N such that

(3.18) sup
u∈Kz

|fn(u)− f(u)| < ε

Mz + 1
and sup

u∈K′
z

|gn(u)− g(u)| < ε

Mz + 1

for every n ∈ Znε , where

Mz := max
({

sup
u∈Kz

|f(u)|, sup
u∈K′

z

|g(u)|
})

< +∞.
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Setting dz := infu∈Kz |u| we have dz > 0. Using now (3.2) we conclude from
(3.18) that for all w ∈ D(z, rz) and n ∈ Znε ,

|T (fn, gn)(w)−T (fn, g)(w)| ≤ 1

2π

∫
γz

|fn(u)|
∣∣∣gn(w

u

)
−g
(w
u

)∣∣∣ |du||u| ≤ |γz|12πdz
ε

as well as

|T (fn, g)(w)− T (f, g)(w)| ≤ 1

2π

∫
γz

|fn(u)− f(u)|
∣∣∣g(w

u

)∣∣∣ |du||u| ≤ |γz|12πdz
ε.

Thus

(3.19) sup
w∈D(z,rz)

|T (fn, gn)(w)− T (f, g)(w)| → 0 as n→ +∞.

Suppose that E is a non-empty compact set such that E ⊂ Ω \ {0}. Since
E ⊂

⋃
z∈E D(z, rz), there exists a finite subset E′ ⊂ E such that E ⊂⋃

z∈E′ D(z, rz). Fix ε > 0. By (3.19) for each z ∈ E′ there exists nz ∈ N
such that

(3.20)
∣∣∣T (fn, gn)(w)− T (f, g)(w)

∣∣∣ < ε, n ∈ Znz , w ∈ D(z, rz).

Setting Nε := max
(
{nz : z ∈ E′}

)
we conclude from (3.20) that

|T (fn, gn)(w)− T (f, g)(w)| < ε, n ∈ ZNε , w ∈ E,

and so the sequence N 3 n 7→ T (fn, gn) is uniformly convergent to T (f, g)
in E. Therefore

(3.21) T (fn, gn)
ucc−−→ T (f, g) in Ω \ {0} as n→ +∞.

Since Ω is open and 0 ∈ Ω, there exists r > 0 with the property D(0, r) ⊂ Ω.
Hence T(0, r) is a compact subset of Ω \ {0}. Then using the maximum
principle for holomorphic functions we deduce from (3.21) that

(3.22)

sup
w∈D(0,r)

|T (fn, gn)(w)− T (f, g)(w)|

= sup
w∈T(0,r)

|T (fn, gn)(w)− T (f, g)(w)| → 0 as n→ +∞.

Notice that for every compact set E ⊂ Ω, E ⊂ D(0, r) ∪ (E \ D(0, r)) and
E \ D(0, r) is a compact subset of Ω \ {0}. Combining this with (3.21) and
(3.22) we obtain

T (fn, gn)
ucc−−→ T (f, g) in Ω as n→ +∞.

This shows the condition (1.11), which completes the proof. �

Corollary 3.2. For all simply connected domains A,B ⊂ C, if 0 ∈ A ∩B,
then CC0(A ∗B) ∈ H1(A,B).
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Proof. Fix A and B satisfying the assumption. By Lemma 2.5, Ω :=
CC0(A ∗ B) is a domain. From Theorem 3.1 it follows that for arbitrarily
fixed f ∈ Hol(A) and g ∈ Hol(B), h := T (f, g)|Ω ∈ Hol(Ω). By (3.12) we
have D(0, ρ(A)ρ(B)) ⊂ Ω. Since f ∗ g ∈ Hol(D(0, Rf,g)), we deduce from
(1.4) that f ∗ g ∈ Hol(D(0, ρ(A)ρ(B)). Notice that fm

ucc−−→ f in D(0, ρ(A))

and gm
ucc−−→ g in D(0, ρ(B)) as m→ +∞, where

C3 z 7→ fm(z) :=
m∑
n=0

f (n)(0)

n!
zn and C3 z 7→ gm(z) :=

m∑
n=0

g(n)(0)

n!
zn, m∈N.

By (1.1), fm ∗ gm
ucc−−→ f ∗ g in D(0, ρ(A)ρ(B)) as m → +∞. On the other

hand the operator T satisfies the conditions (1.10) and (1.11), from which

fm ∗ gm = T (fm, gm)
ucc−−→ T (f, g) in D(0, ρ(A)ρ(B)) as m→ +∞.

Therefore f ∗ g(z) = h(z) for z ∈ D(0, ρ(A)ρ(B)), i.e., the condition (1.5)
holds. Then in view of the definition of the class H1(A,B) we obtain Ω ∈
H1(A,B), which is the desired conclusion. �

Remark 3.3. Under the assumption of Corollary 3.2 we conclude from (1.9)
and the corollary that Ω := CC0(A ∗B) is the greatest domain in the class
H1(A,B) in the sense of the inclusion. If additionally A ∗ B is connected,
then A∗B = CC0(A∗B), and so A∗B ∈ H1(A,B). Moreover, h := T (f, g)|Ω
is the unique holomorphic function satisfying the condition (1.5) and, by the
formula (3.2), the function h has an explicit integral representation.

Let us notice that in Corollary 3.2 the set CC0(A∗B) can not be replaced
by the whole set A ∗ B in general. This is illustrated by the following
example.

Example 3.4. Setting

A := B := C \
(

[1; +∞) ∪
{

eit : t ∈
[
−π

2
;
π

2

]})
we calculate

A ∗B = (D ∪ {z ∈ C : Re(z) < 0}) \ T.
Thus A ∗ B is not connected although both domains A and B are simply
connected.

References

[1] Grosse-Erdmann, K. G., On the Borel–Okada theorem and the Hadamard multiplica-
tion theorem, Complex Variables Theory Appl. 22 (1993), 101–112.
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