On lifting of 2 -vector fields to r-jet prolongation of the tangent bundle

Abstract

If $m \geq 3$ and $r \geq 1$, we prove that any natural linear operator A lifting 2-vector fields $\Lambda \in \bar{\Gamma}\left(\bigwedge^{2} T M\right)$ (i.e., skew-symmetric tensor fields of type $(2,0)$) on m-dimensional manifolds M into 2 -vector fields $A(\Lambda)$ on r-jet prolongation $J^{r} T M$ of the tangent bundle $T M$ of M is the zero one.

Introduction. All manifolds considered in this paper are assumed to be finite dimensional and smooth. Maps between manifolds are assumed to be smooth (of C^{∞}).

Let $\mathcal{M} f_{m}$ be the category of m-dimensional manifolds and their submersions and $\mathcal{V B}$ be the category of vector bundles and their vector bundle homomorphisms.

The r-jet prolongation of the tangent bundle over m-manifolds is the (vector bundle) functor $J^{r} T: \mathcal{M} f_{m} \rightarrow \mathcal{V} \mathcal{B}$ sending any m-manifold M into the vector bundle $J^{r} T M$ of r-jets $j_{x}^{r} X$ at points $x \in M$ of vector fields X on M and every $\mathcal{M} f_{m}$-map $\varphi: M \rightarrow N$ into $J^{r} T \varphi: J^{r} T M \rightarrow J^{r} T N$ given by $J^{r} T \varphi\left(j_{x}^{r} X\right)=j_{\varphi(x)}^{r}\left(T \varphi \circ X \circ \varphi^{-1}\right)$.

An $\mathcal{M} f_{m}$-natural linear operator $A: \bigwedge^{2} T \rightsquigarrow \bigwedge^{2} T\left(J^{r} T\right)$ is an $\mathcal{M} f_{m^{-}}$ invariant family of \mathbf{R}-linear regular operators (functions)

$$
A: \Gamma\left(\bigwedge^{2} T M\right) \rightarrow \Gamma\left(\bigwedge^{2} T\left(J^{r} T M\right)\right)
$$

[^0]for m-manifolds M, where $\Gamma\left(\bigwedge^{2} T N\right)$ is the vector space of 2 -vector fields (i.e., skew-symmetric tensor fields of type $(2,0)$) on a manifold N. The invariance of A means that if $\Lambda \in \Gamma\left(\bigwedge^{2} T M\right)$ and $\Lambda_{1} \in \Gamma\left(\bigwedge^{2} T M_{1}\right)$ are φ-related (i.e., $\Lambda^{2} T \varphi \circ \Lambda=\Lambda_{1} \circ \varphi$) for a $\mathcal{M} f_{m}$-map $\varphi: M \rightarrow M_{1}$, then $A(\Lambda)$ and $A\left(\Lambda_{1}\right)$ are $J^{r} T \varphi$-related.

The main result of the present note can be written as follows.
Theorem 0.1. If $m \geq 3$ and $r \geq 1$, then any natural linear operator A lifting 2-vector fields $\Lambda \in \Gamma\left(\bigwedge^{2} T M\right)$ on m-manifolds M into 2-vector fields $A(\Lambda) \in \Gamma\left(\bigwedge^{2} T\left(J^{r} T M\right)\right)$ on $J^{r} T M$ is the zero one.

The general concept of natural operators can be found in the fundamental monograph [2]. Natural operators lifting 2 -vector fields can be applied in investigations of Poisson structures. That is why, they are studied in many papers, see e.g. $[1,3]$.

From now on, the usual coordinates on \mathbf{R}^{m} will be denoted by x^{1}, \ldots, x^{m}. The usual canonical vector fields on \mathbf{R}^{m} will be denoted by $\partial_{1}, \ldots, \partial_{m}$.

1. Some lemmas. The proof of Theorem 0.1 will occupy the rest of the note. We start with several lemmas.

Lemma 1.1. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M} f_{m}$-natural linear operator $A: \bigwedge^{2} T \rightsquigarrow \Lambda^{2} T\left(J^{r} T\right)$. Assume that $A\left(\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\right)_{\left.\right|_{0} ^{r} \partial_{1}}=$ 0 for $q=0,1,2, \ldots$. Then $A=0$.

Proof. To prove that $A=0$, it is sufficient to show that $A(\Lambda)_{\mid j_{x}^{r} Y}=0$ for any m-manifold M, any $x \in M$, any $Y \in \mathcal{X}(M)$ and any $\Lambda \in \Gamma\left(\bigwedge^{2} T M\right)$.

Of course, we may (without loss of generality) assume $Y_{\mid x} \neq 0$. Then by the invariance of A with respect to charts and the Frobenius theorem we may assume $M=\mathbf{R}^{m}, x=0$ and $Y=\partial_{1}$. Since A is linear, we may assume that $\Lambda=f Z_{1} \wedge Z_{2}$, where $f: \mathbf{R}^{m} \rightarrow \mathbf{R}$ and Z_{1} and Z_{2} are constant vector fields on \mathbf{R}^{m}. Moreover, we may assume that $\partial_{1}, Z_{1}, Z_{2}$ are \mathbf{R}-linearly independent. Then, because of the invariance of A with respect to linear isomorphisms, we may assume that $Z_{1}=\partial_{2}$ and $Z_{2}=\partial_{3}$. Then by the multi-linear Peetre theorem (Theorem 19.9 in [2]) we may assume that $f=\left(x_{1}\right)^{\alpha_{1}}\left(x^{2}\right)^{\alpha_{2}}\left(x^{3}\right)^{\alpha_{3}} \ldots\left(x^{m}\right)^{\alpha_{m}}$ is an arbitrary monomial.

Let $\alpha_{1}, \ldots, \alpha_{m}$ be arbitrary non-negative integers. There exists a 0 -preserving $\mathcal{M} f_{m}$-map $\varphi=\left(x^{1}, \varphi^{2}\left(x^{2}\right), x^{3}, \ldots, x^{m}\right)$ preserving $x^{1}, x^{3}, \ldots, x^{m}$, $\partial_{1}, \partial_{3}$ and sending (the germ at 0 of) ∂_{2} into (the germ at 0 of) $\partial_{2}+$ $\left(x^{2}\right)^{\alpha_{2}} \partial_{2}$. Then by the invariance of A with respect to φ, from the assumption $A\left(\left(x^{1}\right)^{\alpha_{1}} \partial_{2} \wedge \partial_{3}\right)_{j_{0}^{r} \partial_{1}}=0$, we get

$$
A\left(\left(x^{1}\right)^{\alpha_{1}} \partial_{2} \wedge \partial_{3}+\left(x^{1}\right)^{\alpha_{1}}\left(x^{2}\right)^{\alpha_{2}} \partial_{2} \wedge \partial_{3}\right)_{j_{0}^{r} \partial_{1}}=0 .
$$

Then $A\left(\left(x^{1}\right)^{\alpha_{1}}\left(x^{2}\right)^{\alpha_{2}} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r} \partial_{1}}=0$. Furthermore, there exists an $\mathcal{M} f_{m^{-}}$ $\operatorname{map} \psi=\left(x^{1}, x^{2}, \psi^{3}\left(x^{3}, \ldots, x^{m}\right), \ldots, \psi^{m}\left(x^{3}, \ldots, x^{m}\right)\right)$ preserving $0, x^{1}$,
$x^{2}, \partial_{1}, \partial_{2}$ and sending the germ at 0 of ∂_{3} into the germ at 0 of $\partial_{3}+\left(x^{3}\right)^{\alpha_{3}} \ldots\left(x^{m}\right)^{\alpha_{m}} \partial_{3}$. Then by the invariance of A with respect to ψ, from the equality $A\left(\left(x^{1}\right)^{\alpha_{1}}\left(x^{2}\right)^{\alpha_{2}} \partial_{2} \wedge \partial_{3}\right)_{j_{0}^{r} \partial_{1}}=0$, we get

$$
A\left(\left(x^{1}\right)^{\alpha_{1}}\left(x^{2}\right)^{\alpha_{2}} \partial_{2} \wedge \partial_{3}+\left(x^{1}\right)^{\alpha_{1}}\left(x^{2}\right)^{\alpha_{2}}\left(x^{3}\right)^{\alpha_{3}} \ldots\left(x^{m}\right)^{\alpha_{m}} \partial_{2} \wedge \partial_{3}\right)_{\left.\right|_{0} ^{r} \partial_{1}}=0 .
$$

Then $A\left(\left(x^{1}\right)^{\alpha_{1}}\left(x^{2}\right)^{\alpha_{2}}\left(x^{3}\right)^{\alpha_{3}} \ldots\left(x^{m}\right)^{\alpha_{m}} \partial_{2} \wedge \partial_{3}\right)_{j_{0}^{r} \partial_{1}}=0$. The lemma is complete.
Lemma 1.2. (Lemma 42.4 in [2]) Let N be a n-manifold and $x_{o} \in N$ be a point. Let X and Y be vector fields on a manifold N such that $X_{\mid x_{o}} \neq 0$ and $j_{x_{o}}^{r}(X)=j_{x_{o}}^{r}(Y)$. Then there exists an $\mathcal{M} f_{n}$-map φ such that $j_{x_{o}}^{r+1}(\varphi)=$ $j_{x_{o}}^{r+1}(\mathrm{id})$ and $(\varphi)_{*} Y=X$ on some neighborhood of x_{o}.
Lemma 1.3. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M} f_{m}$-natural linear operator $A: \bigwedge^{2} T \rightsquigarrow \Lambda^{2} T\left(J^{r} T\right)$. Assume that $A\left(\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\right)_{\left.\right|_{0} ^{r} \partial_{1}}=$ 0 for $q=0,1,2, \ldots, r$. Then $A=0$.
Proof. Let $q \geq r+1$ be an integer. Since $j_{0}^{r} \partial_{2}=j_{0}^{r}\left(\partial_{2}+\left(x^{1}\right)^{q} \partial_{2}\right)$, then (by Lemma 1.2) there exists an $\mathcal{M} f_{m}$-map

$$
\varphi=\left(\varphi^{1}\left(x^{1}, x^{2}\right), \varphi^{2}\left(x^{1}, x^{2}\right), x^{3}, \ldots, x^{m}\right)
$$

preserving ∂_{3}, sending the germ at 0 of ∂_{2} into the germ at 0 of $\partial_{2}+$ $\left(x^{1}\right)^{q} \partial_{2}$ and such that $j_{x}^{r+1} \varphi=j_{0}^{r+1}(\mathrm{id})$. Then φ preserves $j_{0}^{r} \partial_{1}$. Using the invariance of A with respect to φ, from assumption $A\left(\partial_{2} \wedge \partial_{3}\right)_{j_{0}^{r} \partial_{1}}=0$, we get $A\left(\partial_{2} \wedge \partial_{3}+\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r} \partial_{1}}=0$. So, $A\left(\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r} \partial_{1}}=0$. Then $A\left(\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r} \partial_{1}}=0$ for any $q=0,1, \ldots$. So, $A=0$ because of Lemma 1.1. The lemma is complete.

Let $\mathcal{J}^{r}\left(X^{C}\right)$ be the flow lift of a vector field X on M to $J^{r} T M$ and $\mathcal{J}^{r}\left(X^{V}\right)$ be the vertical lift of X to $J^{r} T M$ given by

$$
\left.\left.\mathcal{J}^{r}\left(X^{V}\right)_{\mid j_{x}^{r} Y}=\frac{d}{d t} \right\rvert\, t=0 \text { (} j_{x}^{r} Y+t j_{x}^{r} X\right)
$$

Lemma 1.4. Let X be a vector field on a manifold M such that $X_{\mid x_{o}}=0$ for some point $x_{o} \in M$. Let $\rho=j_{x_{o}}^{r} Y \in J^{r} T_{x_{o}} M$. Then

$$
\left.\mathcal{J}^{r}\left(X^{C}\right)_{\mid \rho}=-\frac{d}{d \tau} \right\rvert\, \tau=0 .
$$

where the bracket is the usual one on vector fields.
Proof. Let $\left\{\varphi_{t}\right\}$ be the flow of X. Then $\left\{J^{r} T \varphi_{t}\right\}$ is the flow of $\mathcal{J}^{r}\left(X^{C}\right)$ and $\varphi_{t}\left(x_{o}\right)=x_{o}$ for any sufficiently small t. Then

$$
\begin{aligned}
\mathcal{J}^{r}\left(X^{C}\right)_{\mid \rho} & =\left.\frac{d}{d t}\right|_{t=0} J^{r} T \varphi_{t}\left(j_{x_{o}}^{r}(Y)\right)=\left.\frac{d}{d t}\right|_{t=0} j_{x_{o}}^{r}\left(\left(\varphi_{t}\right)_{*} Y\right) \\
& \left.=-\left.\frac{d}{d t}\right|_{t=0} j_{x_{o}}^{r}\left(\left(\varphi_{-t}\right)_{*} Y\right)\right) \left.=-\frac{d}{d \tau} \right\rvert\, \tau=0\left(\rho+\tau j_{x_{o}}^{r}([X, Y])\right) .
\end{aligned}
$$

Lemma 1.5. For any $\lambda \in \mathbf{R}$, the collection consisting of

$$
v_{i}(\lambda):=\mathcal{J}^{r}\left(\left(\partial_{i}\right)^{C}\right)_{\mid j_{0}^{r}\left(\lambda \partial_{1}\right)} \text { and } V_{j}^{\alpha}(\lambda):=\mathcal{J}^{r}\left(\left(x^{\alpha} \partial_{j}\right)^{V}\right)_{j_{0}^{r}\left(\lambda \partial_{1}\right)}
$$

for all $i, j=1, \ldots, m$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in(\mathbf{N} \cup\{0\})^{m}$ with $|\alpha|=$ $\alpha_{1}+\cdots+\alpha_{m} \leq r$ is the basis in $T_{j_{0}^{r}\left(\lambda \partial_{1}\right)} J^{r} T \mathbf{R}^{m}$. Of course, $x^{\alpha}:=\left(x^{1}\right)^{\alpha_{1}}$. $\cdots\left(x^{m}\right)^{\alpha_{m}}$.

Proof. We have $V_{j}^{\alpha}(\lambda)=\frac{d}{d t \mid t=0}\left(j_{0}^{r}\left(\lambda \partial_{1}\right)+t j_{0}^{r}\left(x^{\alpha} \partial_{j}\right)\right)$. So, the lemma is clear.

Lemma 1.6. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M} f_{m}$-natural linear operator $A: \bigwedge^{2} T \rightsquigarrow \bigwedge^{2} T\left(J^{r} T\right)$. Denote $v_{i}:=v_{i}(1)$ and $V_{i}^{\alpha}:=$ $V_{i}^{\alpha}(1)$. Then, given $q=0,1, \ldots, r-1$, we have

$$
A\left(\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\right)_{\left.\right|_{0} ^{r}\left(\partial_{1}\right)}=a^{(q)} v_{2} \wedge v_{3}
$$

for some (unique) real number $a^{(q)}$. Moreover, we have

$$
A\left(\left(x^{1}\right)^{r} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=a v_{2} \wedge v_{3}+b v_{2} \wedge V_{3}^{(r, 0, \ldots, 0)}-b v_{3} \wedge V_{2}^{(r, 0, \ldots, 0)}
$$

for some (unique) real numbers a and b.
Proof. Let $q \in\{0,1, \ldots, r\}$. Because of Lemma 1.5, we can write

$$
\begin{aligned}
A\left(\left(x^{1}\right)^{q} \partial_{2}\right. & \left.\wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\lambda \partial_{1}\right)}=\sum_{1 \leq i<j \leq m} a^{i, j}(\lambda) v_{i}(\lambda) \wedge v_{j}(\lambda) \\
& +\sum_{i, j, \alpha} b_{\alpha}^{i, j}(\lambda) v_{i}(\lambda) \wedge V_{j}^{\alpha}(\lambda)+\sum_{(i, \alpha)<(j, \beta)} c_{\alpha, \beta}^{i, j}(\lambda) V_{i}^{\alpha}(\lambda) \wedge V_{j}^{\beta}(\lambda)
\end{aligned}
$$

for some (unique) real numbers $a^{i, j}(\lambda), b_{\alpha}^{i, j}(\lambda), c_{\alpha, \beta}^{i, j}(\lambda)$ smoothly depending on λ (and depending on q), where $\sum_{i, j, \alpha}$ is the sum over all $i, j \in\{1, \ldots, m\}$ and all $\alpha \in(\mathbf{N} \cup\{0\})^{m}$ with $|\alpha| \leq r$, and $\sum_{(i, \alpha)<(j, \beta)}$ is the sum over all $i, j \in\{1, \ldots, m\}$ and all $\alpha, \beta \in(\mathbf{N} \cup\{0\})^{m}$ with $|\alpha| \leq r$ and $|\beta| \leq r$ and $(i, \alpha)<(j, \beta)$. Here $(\mathbf{N} \cup\{0\}) \times(\mathbf{N} \cup\{0\})^{m}$ is ordered lexicographically, i.e., $(i, \alpha) \leq(j, \beta)$ iff $i<j$ or $\left(i=j\right.$ and $\left.\alpha_{1}<\beta_{1}\right)$ or $\left(i=j, \alpha_{1}=\beta_{1}\right.$ and $\left.\alpha_{2}<\beta_{2}\right)$ or \ldots or $\left(i=j, \alpha_{1}=\beta_{1}, \ldots, \alpha_{m_{1}}=\beta_{m_{1}}, \alpha_{m} \leq \beta_{m}\right)$.

If $\alpha_{2}+\cdots+\alpha_{m} \geq 1$, using the invariance of A with respect to $\left(x^{1}, t x^{2}, \ldots, t x^{m}\right)$, we get $t^{2} b_{\alpha}^{i, j}(\lambda)=t^{s} b_{\alpha}^{i, j}(\lambda)$ for some integer $s<2$. Hence $b_{\alpha}^{i, j}(\lambda)=0$ if $\alpha_{2}+\cdots+\alpha_{m} \geq 1$. If $\alpha_{2}+\cdots+\alpha_{m}=0$ and $(i, j) \notin\{(2,3),(3,2)\}$, then (applying the invariance of A with respect to $\left(x^{1}, t x^{2}, \tau x^{3}, x^{4}, \ldots, x^{m}\right)$) we get $b_{\left(\alpha_{1}, 0, \ldots, 0\right)}^{i, j}(\lambda)=0$. By almost the same arguments, if $\alpha_{2}+\cdots+\alpha_{m}+$ $\beta_{2}+\cdots+\beta_{m} \geq 1$ or $(i, j) \neq(2,3)$, then $c_{\alpha, \beta}^{i, j}(\lambda)=0$.

Similarly, by the invariance of A with respect to $\left(x^{1}, t x^{2}, \tau x^{3}, x^{4}, \ldots, x^{m}\right)$, if $(i, j) \neq(2,3)$, then $a^{i, j}(\lambda)=0$. Hence

$$
\begin{aligned}
A\left(\left(x^{1}\right)^{q} \partial_{2}\right. & \left.\wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\lambda \partial_{1}\right)}=a(\lambda) v_{2}(\lambda) \wedge v_{3}(\lambda) \\
& +\sum_{l=0}^{r} b_{l}(\lambda) v_{2}(\lambda) \wedge V_{3}^{(l, 0, \ldots, 0)}(\lambda)+\sum_{l=0}^{r} c_{l}(\lambda) v_{3}(\lambda) \wedge V_{2}^{(l, 0, \ldots, 0)}(\lambda) \\
& +\sum_{l_{1}, l_{2}=0}^{r} d_{l_{1}, l_{2}}(\lambda) V_{2}^{\left(l_{1}, 0, \ldots, 0\right)}(\lambda) \wedge V_{3}^{\left(l_{2}, 0, \ldots, 0\right)}(\lambda)
\end{aligned}
$$

for the (unique) real numbers $a(\lambda), b_{l}(\lambda), c_{l}(\lambda), d_{l_{1}, l_{2}}(\lambda)$ smoothly depending on λ (and depending on q).

Since $\left[\partial_{2}+x^{2} \partial_{3}, \partial_{3}\right]=0$, there exists an $\mathcal{M} f_{m}$-map

$$
\varphi=\left(x^{1}, \varphi^{2}\left(x^{2}, x^{3}\right), \varphi^{3}\left(x^{2}, x^{3}\right), x^{4}, \ldots, x^{m}\right)
$$

preserving 0 and x^{1} and ∂_{1} and (the germ at 0 of) ∂_{3} and sending (the germ at 0 of) ∂_{2} into (the germ at 0 of) $\partial_{2}+x^{2} \partial_{3}$. One can easily see that such φ preserves (the germ at 0 of) $\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\left(\right.$ as $\left.\partial_{2} \wedge \partial_{3}=\left(\partial_{2}+x^{2} \partial_{3}\right) \wedge \partial_{3}\right)$, $j_{0}^{r}\left(\lambda \partial_{1}\right), v_{2}(\lambda)\left(\right.$ as $\mathcal{J}^{r}\left(\left(x^{2} \partial_{3}\right)^{C}\right)_{\mid j_{0}^{r}\left(\lambda \partial_{1}\right)}=0$ because of Lemma 1.4), $v_{3}(\lambda)$, $V_{3}^{(l, 0, \ldots, 0)}(\lambda)$ and $V_{2}^{(r, 0, \ldots, 0)}(\lambda)$, and it sends $V_{2}^{(l, 0, \ldots, 0)}(\lambda)$ into $V_{2}^{(l, 0, \ldots, 0)}(\lambda)+$ $V_{3}^{(l, 1,0, \ldots, 0)}(\lambda)$ for $l=0,1, \ldots, r-1$. Then using the invariance of A with respect to φ, we get

$$
\begin{aligned}
& \sum_{l=0}^{r-1} c_{l}(\lambda) v_{3}(\lambda) \wedge V_{3}^{(l, 1,0, \ldots, 0)}(\lambda) \\
& \quad+\sum_{l_{1}=0}^{r-1} \sum_{l_{2}=0}^{r} d_{l_{1}, l_{2}}(\lambda) V_{3}^{\left(l_{1}, 1,0, \ldots, 0\right)}(\lambda) \wedge V_{3}^{\left(l_{2}, 0, \ldots, 0\right)}(\lambda)=0 .
\end{aligned}
$$

Then $c_{l}(\lambda)=0$ for $l=0, \ldots, r-1$ and $d_{l_{1}, l_{2}}=0$ for $l_{1}=0, \ldots, r-1$ and $l_{2}=0, \ldots, r$. Quite similarly, replacing 2 by 3 and vice-versa, we get $b_{l}(\lambda)=0$ for $l=0, \ldots, r-1$ and $d_{l_{1}, l_{2}}(\lambda)=0$ for $l_{2}=0, \ldots, r-1$ and $l_{1}=0, \ldots, r$. Moreover, $b_{r}(\lambda)=-c_{r}(\lambda)$. Hence

$$
\begin{aligned}
A\left(\left(x^{1}\right)^{q} \partial_{2}\right. & \left.\wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\lambda \partial_{1}\right)}=a(\lambda) v_{2}(\lambda) \wedge v_{3}(\lambda) \\
& +b(\lambda) v_{2}(\lambda) \wedge V_{3}^{(r, 0, \ldots, 0)}(\lambda)-b(\lambda) v_{3}(\lambda) \wedge V_{2}^{(r, 0, \ldots, 0)}(\lambda) \\
& +c(\lambda) V_{2}^{(r, 0, \ldots, 0)}(\lambda) \wedge V_{3}^{(r, 0, \ldots, 0)}(\lambda)
\end{aligned}
$$

for the (unique) real numbers $a(\lambda), b(\lambda), c(\lambda)$ smoothly depending on λ (and depending on q). Then, using the invariance of A with respect to $\left(t x^{1}, x^{2}, \ldots, x^{m}\right)$, we get $\frac{1}{t^{q}} b(t \lambda)=\frac{1}{t^{r}} b(\lambda)$ and $\frac{1}{t^{q}} c(t \lambda)=\frac{1}{t^{2 r}} c(\lambda)$. Then $c(\lambda)=0$ for $q=0, \ldots, r$, and $b(\lambda)=0$ for $q=0, \ldots, r-1$. The lemma is complete.

Lemma 1.7. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M} f_{m}$-natural linear operator $A: \Lambda^{2} T \rightsquigarrow \bigwedge^{2} T\left(J^{r} T\right)$. Then $A\left(\partial_{2} \wedge \partial_{3}\right)_{\left.\right|_{0} ^{r}\left(\partial_{1}\right)}=0$.
Proof. Since $j_{0}^{r}\left(\partial_{2}+\left(x^{1}\right)^{r+1} \partial_{2}\right)=j_{0}^{r}\left(\partial_{2}\right)$, then (by Lemma 1.2) there exists an $\mathcal{M} f_{m}$-map

$$
\varphi=\left(\varphi^{1}\left(x^{1}, x^{2}\right), \varphi^{2}\left(x^{1}, x^{2}\right), x^{3}, \ldots, x^{m}\right)
$$

preserving 0 and ∂_{3} and sending the germ at 0 of ∂_{2} into the germ at 0 of $\partial_{2}+\left(x^{1}\right)^{r+1} \partial_{2}$ and such that $j_{0}^{r+1} \varphi=j_{0}^{r+1}(\mathrm{id})$. Then φ preserves $v_{3}, j_{0}^{r}\left(\partial_{1}\right)$ and it sends v_{2} into $v_{2}+(r+1) V_{2}^{(r, 0, \ldots, 0)}$. Then by the invariance of A with respect to φ and Lemma 1.6, we get

$$
A\left(\left(x^{1}\right)^{r+1} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=(r+1) a^{(0)} V_{2}^{(r, 0, \ldots, 0)} \wedge v_{3} .
$$

Similarly, replacing 2 on 3 and vice-versa, we easily get

$$
A\left(\left(x^{1}\right)^{r+1} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=(r+1) a^{(0)} v_{2} \wedge V_{3}^{(r, 0, \ldots, 0)} .
$$

Then $a^{(0)}=0$. The lemma is complete.
Lemma 1.8. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M} f_{m}$-natural linear operator $A: \bigwedge^{2} T \rightsquigarrow \Lambda^{2} T\left(J^{r} T\right)$. Then $A\left(f\left(x^{1}, x^{2}\right) \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=0$ for any smooth map $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $j_{0}^{r}(f)=0$.
Proof. Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be such that $j_{0}^{r}(f)=0$. Since $j_{0}^{r}\left(\partial_{2}+f\left(x^{1}, x^{2}\right) \partial_{2}\right)=$ $j_{0}^{r}\left(\partial_{2}\right)$, then (by Lemma 1.2) there exists an $\mathcal{M} f_{m}$-map

$$
\psi=\left(\psi^{1}\left(x^{1}, x^{2}\right), \psi^{2}\left(x^{1}, x^{2}\right), x^{3}, \ldots, x^{m}\right)
$$

preserving 0 and ∂_{3}, and sending the germ at 0 of ∂_{2} into the germ at 0 of $\partial_{2}+f\left(x^{1}, x^{2}\right) \partial_{2}$ and such that $j_{0}^{r+1}(\psi)=j_{0}^{r+1}(\mathrm{id})$ (then ψ preserves $\left.j_{0}^{r}\left(\partial_{1}\right)\right)$. Then using Lemma 1.7 and the invariance of A with respect to ψ from $A\left(\partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=0$, we get $A\left(\partial_{2} \wedge \partial_{3}+f\left(x^{1}, x^{2}\right) \partial_{2} \wedge \partial_{3}\right)_{j_{0}^{r}\left(\partial_{1}\right)}=0$. So, $A\left(f\left(x^{1}, x^{2}\right) \partial_{2} \wedge \partial_{3}\right)_{j_{0}^{r}\left(\partial_{1}\right)}=0$.

2. Proof of the main result.

Proof of Theorem 0.1. Let $m \geq 3$ and $r \geq 1$ be integers. Consider an $\mathcal{M} f_{m}$-natural linear operator $A: \bigwedge^{2} T \rightsquigarrow \bar{\Lambda}^{2} T\left(J^{r} T\right)$. We are going to prove that $A=0$. Because of Lemma 1.3 it is sufficient to prove that $A\left(\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=0$ for $q=0, \ldots, r$.

Let $q \in\{0, \ldots, r\}$. By Lemma 1.7, we may assume that $q \geq 1$. Since $j_{0}^{r}\left(\partial_{2}+\left(x^{1}\right)^{r+1} \partial_{2}\right)=j_{0}^{r}\left(\partial_{2}\right)$, then (by Lemma 1.2) there exists an $\mathcal{M} f_{m}$-map

$$
\varphi=\left(\varphi^{1}\left(x^{1}, x^{2}\right), \varphi^{2}\left(x^{1}, x^{2}\right), x^{3}, \ldots, x^{m}\right)
$$

preserving 0 and ∂_{3}, and sending the germ at 0 of ∂_{2} into the germ at 0 of $\partial_{2}+\left(x^{1}\right)^{r+1} \partial_{2}$ and such that $j_{0}^{r+1} \varphi=j_{0}^{r+1}(\mathrm{id})$. Then φ preserves ∂_{3}, v_{3}, $j_{0}^{r}\left(\partial_{1}\right), V_{2}^{(r, 0, \ldots, 0)}, V_{3}^{(r, 0, \ldots 0)}$, and it sends v_{2} into $v_{2}+(r+1) V_{2}^{(r, 0, \ldots, 0)}$ (to see
this we propose to use Lemma 1.4) and it sends the germ at 0 of $\left(x^{1}\right)^{q} \partial_{2}$ into the germ at 0 of $\left(x^{1}\right)^{q} \partial_{2}+f\left(x^{1}, x^{2}\right) \partial_{2}$ for some $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $j_{0}^{r}(f)=0$.

If $q \leq r-1$, then by the invariance of A with respect to φ and Lemma 1.6 and Lemma 1.8, we get

$$
0=A\left(f\left(x^{1}, x^{2}\right) \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=(r+1) a^{(q)} V_{2}^{(r, 0, \ldots, 0)} \wedge v_{3}
$$

Then $a^{(q)}=0$, and then $A\left(\left(x^{1}\right)^{q} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=0$.
If $q=r$, then by the invariance of A with respect to φ and Lemma 1.6 and Lemma 1.8, we get

$$
\begin{aligned}
0 & =A\left(f\left(x^{1}, x^{2}\right) \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)} \\
& =(r+1) a V_{2}^{(r, 0, \ldots, 0)} \wedge v_{3}+b(r+1) V_{2}^{(r, 0, \ldots, 0)} \wedge V_{3}^{(r, 0, \ldots, 0)}
\end{aligned}
$$

Then $a=0$ and $b=0$, and then $A\left(\left(x^{1}\right)^{r} \partial_{2} \wedge \partial_{3}\right)_{\mid j_{0}^{r}\left(\partial_{1}\right)}=0$.
Hence $A=0$ because of Lemma 1.3 and Theorem 0.1 is complete.

References

[1] Debecki, J., Linear natural lifting p-vectors to tensors of type $(q, 0)$ on Weil bundles, Czechoslovak Math. J. 66(141) (2) (2016), 511-525.
[2] Kolář, I, Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[3] Mikulski, W. M., The linear natural operators lifting 2-vector fields to some Weil bundles, Note di Math. 19 (2) (1999), 213-217.

Jan Kurek
Institute of Mathematics
Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: kurek@hektor.umcs.lublin.pl
Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. Łojasiewicza 6
30-348 Cracow
Poland
e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl
Received December 24, 2020

[^0]: 2010 Mathematics Subject Classification. 58A20, 58A32.
 Key words and phrases. Natural operator, 2-vector field, r-jet prolongation.

