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Abstract. In this paper we study 2 × 2 systems of conservation laws with
discontinuous fluxes arising in vehicular traffic modeling. The main goal is to
introduce an appropriate notion of solution. To this aim we consider physi-
cally reasonable microscopic follow-the-leader models. Macroscopic Riemann
solvers are then obtained as many particle limits. This approach leads us to
develop six models. We propose a unified way to describe such models, which
highlights their common property of maximizing the density flow across the
interface under appropriate physical restrictions depending on the case at
hand.

1. Introduction

In this paper we consider the 2× 2 system of partial differential equations

(1.1)

{
ρt + f(ρ, w, x)x = 0, t > 0, x ∈ R,
wt + v(ρ, w, x)wx = 0, t > 0, x ∈ R,
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where (ρ, w) is the unknown variable, v is a possibly discontinuous function
of x and

(1.2) f(ρ, w, x)
.
= ρ v(ρ, w, x).

More precisely, u .
= (ρ, w) takes values in

Ω
.
=
{

(ρ, w) ∈ [0,+∞)2 : w > 0, w ≥ p(ρ)
}
,

with p : [0,+∞)→ [0,+∞) satisfying

(A.1) p ∈ C222((0,+∞);R), p′(ρ) > 0, 2p′(ρ)+ρ p′′(ρ) > 0 for every ρ > 0.

A possible choice is p(ρ)
.
= ργ , γ > 0. Furthermore, v : Ω × R → [0,+∞)

has the form

(1.3) v(u, x)
.
= v−(u) · 1R−(x) + v+(u) · 1R+(x),

with
R−

.
= (−∞, 0), R+

.
= [0,+∞),

and for some functions v± : Ω → [0,+∞) that are weakly decreasing and
chosen according to the case under consideration. Above and after 1A is the
indicator function of set A ⊂ R. By (1.2), (1.3) we have that f : Ω × R →
[0,+∞) has the form

(1.4) f(u, x)
.
= f−(u) · 1R−(x) + f+(u) · 1R+(x),

with f±(ρ, w)
.
= ρ v±(ρ, w). We assume that

(A.2)

for any w > 0 the map

f(·, w) : [0, p−1(w)]→ [0,+∞)

is Lipschitz continuous, piecewice regular and concave.

System (1.1) can be interpreted as a generalization of the Aw, Rascle,
Zhang (ARZ) model [13, 36] for vehicular traffic to the case of a non-
homogeneous road. For this reason below we refer to t > 0 as time, x ∈ R
as space, R− as incoming road, R+ as outgoing road, x = 0 as junction,
ρ as density, v as velocity, f as density flux and w as Lagrangian marker.
In particular in Sections 4, 5 and 6 we consider two roads characterized
by different capacities (i.e., maximal flows) or by different speed limits, or
both.

The first equation in (1.1) is a conservation law and expresses the con-
servation of the total number of vehicles. The second equation in (1.1) is a
transport equation and formally implies that w is transported at the veloc-
ity v of the vehicles. Away from the vacuum, system (1.1) is equivalent to
the 2× 2 system of conservation law{

ρt + f(ρ, w, x)x = 0, t > 0, x ∈ R,
(ρw)t + (v(ρ, w, x) ρw)x = 0, t > 0, x ∈ R.
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To the best of author’s knowledge, there is no literature on 2× 2 systems of
conservation laws with discontinuous fluxes. We refer the reader interested
in the scalar case to [1–8,10–12,14–17,20–27,30,32–35].

The derivatives in (1.1) are interpreted in the sense of distributions. In
fact, even for smooth density flux f and smooth initial data, classical solu-
tions may not exist globally in time since discontinuities can arise in finite
time. It is therefore necessary to consider weak solutions. Yet weak solu-
tions are in general not unique. This motivates in [9] the introduction of
entropy conditions à la Kruzhkov [28], which select a unique weak solution,
at least away from the vacuum ρ = 0 and under the assumption that the
road is homogeneous, namely f− ≡ f+.

Our main concern is to introduce an appropriate notion of solution for
(1.1) to uniquely select a physically reasonable weak solution to a Cauchy
problem. This can be achieved by choosing a unique Riemann solver

RSR−,R+
: Ω2 → BV(R; Ω),

which by definition associates to any pair (uL, uR) ∈ Ω2 with

uL
.
= (ρL, wL), uR

.
= (ρR, wR),

a unique self-similar weak solution u(t, x)
.
= RSR−,R+ [uL, uR](x/t) to the

Cauchy problem for (1.1) with Riemann initial condition

(1.5) u(0, x) = uL · 1R−(x) + uR · 1R+(x), x ∈ R.

In fact choosing a Riemann solver corresponds to select the admissible dis-
continuities. The key point is to select the admissible discontinuities along
the interface x = 0 and those involving a vacuum state u = (ρ, w) = (0, w),
w > 0. Indeed, the entropy conditions introduced in [9] do not take into
account for the presence of the interface and do not uniquely select a solu-
tion when a vacuum state is involved. We make this point apparent in the
following Definition 1.1. We denote by

RS : Ω2 → BV(R; Ω)

the Riemann solver introduced in [13,36] for ARZ model; we defer its defi-
nition to Section 2.

Definition 1.1. Fix a Riemann solver RSR−,R+
: Ω2 → BV(R; Ω). Let ū

be in L∞∞∞(R; Ω). We say that u ∈ C000
(
[0,+∞);L111

loc(R; Ω)
)

is a solution to
the Cauchy problem for (1.1) with initial condition

(1.6) u(0, x) = ū(x), x ∈ R,

if the following conditions are satisfied:

(1) u is a weak solution to (1.1), (1.6).
(2) u satisfies the entropy conditions given in [9] in both (0,+∞)×(−∞, 0)

and (0,+∞)× (0,+∞).
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(3) If u has discontinuities along the curve x = σ(t), then its traces
u(t, σ(t)−) and u(t, σ(t)+) satisfy the following conditions:
(a) for a.e. t > 0, if the discontinuity x = σ(t) occurs away from x = 0

and involves a vacuum state, then

RS[u(t, σ(t)−), u(t, σ(t)+)](ν) =

{
u(t, σ(t)−) if ν < 0,

u(t, σ(t)+) if ν ≥ 0,

(b) for a.e. t > 0, if the discontinuity x = σ(t) occurs at x = 0, then

RSR−,R+ [u(t, 0−), u(t, 0+)](ν) =

{
u(t, 0−) if ν < 0,

u(t, 0+) if ν ≥ 0.

Some comments on the above definition are in order. Condition (2)
deals with discontinuity away from the interface x = 0. The discontinuities
along x = 0 are considered in (3), (b). Furthermore, the entropy conditions
introduced in [9] and used in (2) do not select a unique solution if a vacuum
state is involved. This motivates condition (3), (a).

Our choice for the macroscopic Riemann solver RSR−,R+ stems from a
microscopic follow-the-leader (FTL) model. The main advantage of this
approach is that it requires to set assumptions on the interacting behavior
of the vehicles only at the microscopic level. Since traffic dynamics are
essentially microscopic, it is easier to physically motivate microscopic rather
than macroscopic assumptions. We thus first adapt to (1.1) the (scalar)
microscopic FTL approximation proposed in [19] for the (2×2 system) ARZ
model. We then rely on a passage to the limit similar to that performed
in [19]. At last we obtain RSR−,R+ as many particle limit by applying, at
the level of numerical simulations and for carefully identified sets of data,
an approximation procedure adapted from [19].

It turns out that at the limit we get the Riemann solver which maximizes
the flow at x = 0 under some appropriate physical restrictions depending
on the case under consideration. Let us underline that we do not require
(explicitly) any maximization property at the microscopic level, as we only
prescribe elementary vehicle interaction rules.

At last, we consider the case of pointwise bottlenecks, and show how a
zooming process allows to build a model for point constraint on the flow or
on the velocity, starting from those previously introduced.

This paper is organized as follows. For completeness, in Section 2 we
recall the ARZ model [13, 36] for the homogeneous case. In Section 3, we
give in Definition 3.1 a general definition of the Riemann solver for Riemann
problem (1.1), (1.5) and motivate its introduction via a general FTL model
(3.2). In Sections 4, 5, and 6, we consider specific cases with the two sections
of the road characterized by different maximal flows, maximal speeds and
by both maximal flows and speeds, respectively. For each of these cases we
propose two approaches. At last in Section 7, we propose two approaches
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to derive from the previous results traffic models with point constraints on
the flow or on the velocity.

2. Riemann solver RS for ARZ model

In this section we recall the ARZ model [13,36] for vehicular traffic along a
homogeneous road. It is expressed by the 2×2 system of partial differential
equations

(2.1)

{
ρt + (ρ v)x = 0, t > 0, x ∈ R,
wt + v wx = 0, t > 0, x ∈ R.

Here ρ = ρ(t, x) ≥ 0 and v = v(t, x) ≥ 0 are the traffic density and velocity
at time t ≥ 0 and position x ∈ R along a one-lane homogeneous road.
Moreover, w > 0 is a Lagrangian marker characterizing lengths and maximal
speeds of the vehicles. The link between these quantities is expressed by
the state equation

(2.2) v = w − p(ρ),

where p : [0,+∞) → [0,+∞) satisfies (A.1), is an anticipation factor and
takes into account drivers reactions to the state of traffic in front of them.
The first equation in (2.1) expresses the conservation of the total number
of vehicles, while the second equation in (2.1) is a transport equation and
formally implies that w is transported at the velocity v of the vehicles.

A general notion of solution which enables to uniquely select a physically
reasonable weak solution to Cauchy problems for (2.1) can be based on
the definition of the Riemann solver RS : Ω2 → BV(R; Ω) introduced in
[13,36] by applying Definition 1.1. We stress that the entropy conditions à
la Kruzhkov [28] introduced in [9] select a unique weak solution only away
from the vacuum ρ = 0. Moreover, in [19] the authors rigorously deduced
the ARZ model from a microscopic FTL model as many particle limit, but
did not prove the uniqueness of the limit.

We conclude this section by recalling the definition of the Riemann solver
RS : Ω2 → BV(R; Ω) for the ARZ model (2.1), (2.2). We first need to
introduce some notation. Let v, f : Ω→ [0,+∞) be defined by

(2.3) v(u)
.
= w − p(ρ), f(u)

.
= ρ v(u).

For any w > 0, let

λw : [0, p−1(w)]→ [−p−1(w) p′(p−1(w)), w]

be defined by λw(ρ)
.
= w − p(ρ)− ρ p′(ρ) and let

Rw : [−p−1(w) p′
(
p−1(w)

)
, w]→ [0, p−1(w)]
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be its inverse function. Notice that ∂ρf(ρ, w) = λw(ρ). Let s : {(uL, uR) ∈
Ω× Ω : ρL 6= ρR} → R be defined by

s(uL, uR)
.
=
f(uR)− f(uL)

ρR − ρL
.

Define
[a]+

.
= max{a, 0}.

Definition 2.1. The Riemann solver RS : Ω2 → BV(R; Ω) for the ARZ
model (2.1), (2.2) is defined as follows:
(L.1) If uL, uR ∈ Ω with wL 6= wR and v(uL) = v(uR), then

RS[uL, uR](ν)
.
=

{
uL if ν < v(uL,R),

uR if ν ≥ v(uL,R).

(L.2) If uL, uR ∈ Ω with wL = wR and v(uR) < v(uL), then

RS[uL, uR](ν)
.
=

{
uL if ν < s(uL, uR),

uR if ν ≥ s(uL, uR).

(L.3) If uL, uR ∈ Ω with wL = wR and v(uL) < v(uR), then

RS[uL, uR](ν)
.
=


uL if ν < λwL,R(ρL),

RwL(ν) if λwL,R(ρL) ≤ ν < λwL,R(ρR),

uR if ν ≥ λwL,R(ρR).

(L.4) If uL, uR ∈ Ω with wL 6= wR and v(uR) < v(uL), then

RS[uL, uR](ν)
.
=


uL if ν < s(uL, uM ),

uM if s(uL, uM ) ≤ ν < v(uR),

uR if ν ≥ v(uR),

where uM
.
= (ρM , wM ) with ρM

.
= p−1(wL − v(uR)) and wM

.
= wL.

(L.5) If uL, uR ∈ Ω with wL 6= wR and v(uL) < v(uR), then

RS[uL, uR](ν)
.
=


uL if ν < λwL(ρL),

RwL(ν) if λwL(ρL) ≤ ν < λwL(ρM ),

uM if λwL(ρM ) ≤ ν < v(uR),

uR if ν ≥ v(uR),

where uM
.
= (ρM , wM ) with ρM

.
= p−1([wL−v(uR)]+) and wM

.
= wL.

(L.6) If uL = uR, then RS[uL, uR] ≡̇uL,R.

Some comments on the above definition are in order. In case (L.1) we have
that RS[uL, uR] is the 2-contact discontinuity C2(uL, uR). In case (L.2)
we have that 0 ≤ ρL < ρR ≤ p−1(wL,R) and RS[uL, uR] is the 1-shock
S1(uL, uR). In case (L.3) we have that 0 ≤ ρR < ρL ≤ p−1(wL,R) and
RS[uL, uR] is the 1-rarefaction R1(uL, uR). In case (L.4) we have that
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f = ρ v(ρ, wL)

ρ

f

f = ρ v(uR)
uM

uL

u1R u2R

f = ρ v(ρ, wL)

f = ρ v(uR)

ρ

f

uL

uM

u1R

u2R

f = ρ v(ρ, wL)

f = ρ v(uR)

ρ

f

uL

uM

uR

Figure 1. Construction of RS[uL, uR] in the cases (L.4)
and (L.5). Above u1R and u2R represent two possible choices
for the right state uR.

0 ≤ ρL < ρM ≤ p−1(wL) and RS[uL, uR] is the juxtaposition of S1(uL, uM )
and C2(uM , uR), see Figure 1. In case (L.5) we have that 0 ≤ ρM < ρL ≤
p−1(wL), with ρM = 0 if and only if v(uR) ≥ wL, and RS[uL, uR] is the
juxtaposition of R1(uL, uM ) and C2(uM , uR), see Figure 1.

We conclude this section with two remarks.

Remark 2.2. According to (2.2), if a vehicle is characterized by the La-
grangian marker w, then it has maximal speed w and length 1/p−1(w).
Indeed, if the vehicles have the same Lagrangian marker w and are bumper-
to-bumper, then their velocity is zero, v = 0, and by (2.2) this corresponds
to density ρ = p−1(w), hence in any interval with length L = 1/p−1(w)
there is ρL = 1 vehicle. This property holds true also for all the proposed
generalizations of the ARZ model.

Remark 2.3. We underline that the fundamental diagrams {(ρ, f) : f =
(w − p(ρ)) ρ}, w > 0, do not intersect away from the vacuum. We will see
that this property is lost in the following generalizations of the ARZ model.

3. Riemann solver RSR−,R+ for ARZ model with discontinuous
flux

Despite the cases that we are going to consider in the next three sections
are different, as a matter of fact the three corresponding Riemann solvers
obtained as many particle limits can be described in the same way. Roughly
speaking, the reason is that all the obtained Riemann solvers optimize the
flow at x = 0 under some appropriate physical restrictions depending on
the case under consideration. In this section we first give a general FTL
model used to deduce our Riemann solvers and then give a general definition
describing them in a unified way.

3.1. Microscopic selection of the Riemann solver RSR−,R+. Choos-
ing a Riemann solver RSR−,R+

: Ω2 → BV(R; Ω) is equivalent to associate
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to any (uL, uR) ∈ Ω2 a unique self-similar weak solution to the Riemann
problem (1.1), (1.5). If ρL = 0 = ρR, then we simply define

RSR−,R+ [uL, uR](ν)
.
=

{
uL if ν < wR,

uR if ν ≥ wR.

Assume now that ρL + ρR 6= 0. We then construct RSR−,R+ [uL, uR]
as follows. Fix n ∈ N and δ > 0. We approximate the Riemann initial
condition (1.5) with the truncated Riemann initial condition

(3.1) u(0, x) = uL · 1(−δ,0)(x) + uR · 1[0,δ)(x).

As a result, the traffic has finite total number of vehicles, that is δ (ρL+ρR).
Define ` .= δ (ρL + ρR)/n. We then introduce basic microscopic interaction
rules between the vehicles and encode them in a microscopic FTL model of
the form

(3.2a)


ẋ1 = v(0, w1, x̄1), t > 0,

ẋi+1 = v
(

`
xi−xi+1

, wi+1, xi+1

)
, t > 0, i ∈ {1, . . . , n},

xi(0) = x̄i, i ∈ {1, . . . , n+ 1}.

Above xi = xi(t) ∈ R is the position at time t ≥ 0 (of the front bumper)
of the i-th vehicle labeled starting from the right. The initial positions
x̄1, . . . , x̄n+1 are chosen as follows:

(3.2b)

ρL 6= 0 =⇒ x̄i+1
.
= −δ + (n− i) `

ρL
≤ 0, i ≥

⌈
ρR

ρL + ρR
n

⌉
,

ρL = 0 =⇒ x̄n+1
.
= 0,

ρR 6= 0 =⇒ x̄i+1
.
= δ − i `

ρR
≥ 0, i ≤

⌊
ρR

ρL + ρR
n

⌋
,

ρR = 0 =⇒ x̄1
.
= 0.

The i-th vehicle is characterized by the Lagrangian marker

(3.2c) wi
.
=

{
wL if i < N,

wR if i ≥ N,
N

.
=

⌈
ρR

ρL + ρR
n

⌉
+ 1,

has maximal speed wi > 0 and length `/p−1(wi).
We then associate to (3.2) the approximate discrete density

(3.3) r(t, x)
.
=

n∑
i=1

`

xi(t)− xi+1(t)
· 1[xi+1(t),xi(t))(x)

and the approximate Lagrangian marker

(3.4) w(t, x)
.
= wL · 1(−∞,xN (t))(x) + wR · 1[xN (t),+∞)(x).
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Notice that for any t ≥ 0, we have∫ xi−1(t)

xi(t)
r(t, x) dx = `, ‖r(t)‖L111(R) = δ (ρL + ρR), x1(t) = x̄1 + v(0, w1, x̄1) t.

At last, by letting n → +∞ and δ → +∞ we expect that u
.
= (r, w)

converges to a self-similar weak solution u .
= (ρ, w) to the Riemann problem

(1.1), (1.5), and then we accordingly define RSR−,R+ [uL, uR](x/t)
.
= u(t, x).

We recall that in the case of a homogeneous road such limit was rigorously
proved in [19]. The rigorous proof for the convergence of the discretized
solutions u corresponding to FTL models (3.1), (3.2) considered here is
beyond the purposes of the present paper and is left to future works: here we
take it for granted. Here we are only interested in showing how it is possible
to deduce physically reasonable Riemann solvers from ad hoc computer
assisted numerical simulations.

3.2. General definition of Riemann solver RSR−,R+. We recall that
the ARZ model can be interpreted as a generalization of the Lighthill–
Whitham–Richards model [29, 31]. Indeed, rather than just one (bell
shaped) fundamental diagram as for the LWR model, the ARZ model al-
lows to consider a one parameter family of fundamental diagrams f( · , w) :
[0, p−1(w)] → [0,+∞), w > 0, corresponding to the Lax curves of the
first family for (2.1). If we consider a non-homogeneous road, then for
each road R± we consider a corresponding family of fundamental diagrams
f±( · , w) : [0, p−1(w)] → [0,+∞), w > 0, obtained by applying some appro-
priate physical restrictions. Notice that in this case (2.2) does not hold and
cannot be applied to obtain the velocity.

A straightforward adaptation of Definition 2.1 gives the Lax–Riemann
solver RS± : Ω2 → BV(R; Ω) corresponding to{

ρt + f±(ρ, w)x = 0, t > 0, x ∈ R,
wt + v±(ρ, w)wx = 0, t > 0, x ∈ R,

with f±(ρ, w)
.
= ρ v±(ρ, w). Before giving a general definition for RSR−,R+ ,

we need to introduce some notation. Let u∗
.
= (ρ∗, w∗) : Ω × (0,+∞) → Ω

be defined by

(3.5)
w∗(uR, wL)

.
= wL,

ρ∗(uR, wL)
.
= inf

{
ρ ∈ [0, p−1(wL)] : v+(ρ, wL) < v+(uR)

}
.

Assumption (A.2) does not ensure that f±(·, w) attains its maximum

(3.6) F±(w)
.
= max

ρ∈[0,p−1(w)]
f±(ρ, w)
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at a unique density value. For this reason we introduce

(3.7)
R−(w)

.
= min{ρ ∈ [0, p−1(w)] : f−(ρ, w) = F−(w)},

R+(w)
.
= max{ρ ∈ [0, p−1(w)] : f+(ρ, w) = F+(w)}.

Define Q− : Ω→ [0,+∞) and Q+ : Ω× (0,+∞)→ [0,+∞) as follows:

(3.8)

Q−(uL)
.
= max

ρ∈[0,p−1(wL)]
f−
(
RS−[uL, (ρ, wL)](0−)

)
=

{
F−(wL) if ρL ≥ R−(wL),

f−(uL) if ρL < R−(wL),

Q+(uR, wL)
.
= max

ρ∈[0,p−1(wL)]
f+
(
RS+[(ρ, wL), u∗(uR, wL)](0+)

)
=

{
f+(u∗(uR, wL)) if ρ∗(uR, wL) > R+(wL),

F+(wL) if ρ∗(uR, wL) ≤ R+(wL).

Let then û
.
= (ρ̂, ŵ), ǔ

.
= (ρ̌, w̌) : Ω2 → Ω be defined by

(3.9)

{
ρ̂(uL,uR)

.
= max

{
ρ∈
[
R−(wL), p−1(wL)

]
: f−(ρ,wL)=Q(uL,uR)

}
,

ŵ(uL,uR)=wL,

(3.10)

{
ρ̌(uL,uR)

.
= min{ρ∈ [0,R+(wL)] : f+(ρ, wL) = Q(uL, uR)},

w̌(uL, uR)=wL,

where

(3.11) Q(uL, uR)
.
= min{Q−(uL),Q+(uR, wL)}.

We are now in the position to give the following definition.

Definition 3.1. The Riemann solver RSR−,R+
: Ω2 → BV(R; Ω) for (1.1),

(1.2), (1.3) is defined as follows:

RSR−,R+ [uL, uR](ν)
.
=

{
RS−[uL, û(uL, uR)](ν) if ν < 0,

RS+[ǔ(uL, uR), uR](ν) if ν ≥ 0.

In Sections 4, 5, and 6, we assume that the road sections R± are character-
ized by either different capacities F±, or speed limits V±, or both capacities
and speed limits. In other words, we consider a traffic along the road R
governed by (1.1), (1.2) and satisfying one of the following constraints:

Section 4 f(u(t, x), x) ≤ F− · 1R−(x) + F+ · 1R+(x),

Section 5 v(u(t, x), x) ≤ V− · 1R−(x) + V+ · 1R+(x),

Section 6

{
f(u(t, x), x) ≤ F− · 1R−(x) + F+ · 1R+(x),

v(u(t, x), x) ≤ V− · 1R−(x) + V+ · 1R+(x).
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If the fundamental diagram ρ 7→ f(ρ, w) satisfies the constraint under
consideration along the road section R−, then we simply set f−(·, w, x) ≡
f(·, w) for any x ∈ R−; analogously in R+. For the remaining cases we
propose two approaches: if ρ 7→ f(ρ, w) does not satisfy the constraint
under consideration, then, roughly speaking, either we “rescale” it by a
coefficient, or simply “cut” the “bad” part. The first approach resembles
that proposed in [18] for a scalar conservation law with a point constraint
on the flow; the second approach is analogous to that proposed in [12]
for a scalar conservation law with different velocity constraints along two
sections of a road. We apply the first approach in Subsections 4.1, 5.1,
and 6.1, whereas the second approach will be exploited in Subsections 4.2,
5.2, and 6.2.

We conclude this section with some remarks.

Remark 3.2. The introduction of R± is needed in order to properly define
Q±, û and ǔ in (3.8), (3.9), and (3.10), respectively. We stress that in this
respect, commuting min with max in (3.7) does not affect such definitions,
hence also that of Q in (3.11).

Remark 3.3. We stress that RSR−,R+ given in Definition 3.1 is a Riemann
solver, namely for any (uL, uR) ∈ Ω2 we have that

u(t, x)
.
= RSR−,R+ [uL, uR](x/t)

is a weak solution. This simply follows from the fact that RS± are Rie-
mann solvers and by the fact that by (3.9), (3.10) we have f−(û(uL, uR)) =
f+(ǔ(uL, uR)).

Remark 3.4. Definition 3.1 is analogous to that given in [18] for point
constraint on the flow. The main difference is that here we do not distinguish
between the classical and non-classical cases. The reason is that we want
to highlight that both the classical and non-classical solutions optimize the
flow through x = 0 under some appropriate physical restrictions, depending
on the case under consideration.

Remark 3.5. The characteristics of the road do not affect the length of
the vehicles. For this reason we always assume that f±(ρ, w) = 0 if and only
if ρ ∈ {0, p−1(w)}.
Remark 3.6. For any (uL, uR) ∈ Ω2 such that wL 6= wR we have that the
right most wave of RSR−,R+ [uL, uR] is a contact discontinuity with speed
of propagation v+(uR). We stress that 2-contact discontinuities always sep-
arate the two families of vehicles, characterized by the Lagrangian markers
wL and wR.

Remark 3.7. We will see that ν 7→ RSR−,R+(ν) may have total variation
greater than that of the initial datum, namely |ρL− ρR|+ |wL−wR|; more-
over, the maximum principle holds for the w-coordinate but may fail for the
ρ-coordinates.
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Remark 3.8. The simplest choice for f± satisfying the constraint under
consideration is to rescale f(·, w) for any w > 0. However, with such choice
there is no need to study the resulting model as it is a straightforward
generalization of the ARZ model.

4. ARZ model for two roads with different capacities

In this section we assume that the two roads R−
.
= (−∞, 0) and R+

.
=

[0,+∞) have capacities F− > 0 and F+ > 0, respectively. Then the
evolution of traffic along R can be described by (1.1), (1.3), (1.4) with
f± : Ω→ [0,+∞) such that

(4.1) f±(u) ≤ F± for any u ∈ Ω ⇐⇒ F±(w) ≤ F± for any w > 0,

where F±(w) is defined in (3.6).
Let f be defined by (2.3) and introduce the following notation

(4.2)
R(w)

.
= Rw(0), F (w)

.
= max

ρ∈[0,p−1(w)]
f(ρ, w) = f(R(w), w),

W±
.
= F−1(F±).

Remark 4.1. Notice that if p(ρ)
.
= ργ , γ > 0, then

(4.3) R(w)
.
=

(
w

γ + 1

) 1
γ

, F (w)
.
= γ

(
w

γ + 1

)1+ 1
γ

, W±
.
= (γ + 1)

(
F±
γ

) γ
γ+1

.

The fundamental diagram ρ 7→ f(ρ, w) fails to satisfy (4.1) if and only if

F (w) > F± ⇐⇒ w > W±.

For this reason we necessarily have f±(·, w) 6≡ f(·, w) for all w > W±.
In the following two subsections, we propose two possible choices for the

fluxes f± satisfying (4.1) and such that f±(·, w) ≡ f(·, w) for all w ≤W±.

4.1. First option. In this subsection, we consider problem (1.1), (1.3),
(1.4) with

(4.4)
v±(ρ, w)

.
=

min{F±, F (w)}
F (w)

v(ρ, w) =

{
v(ρ, w) if w ≤W±,
F±
F (w) v(ρ, w) if w > W±,

f±(u)
.
= ρ · v±(u),

where v is defined in (2.3)1. Notice that both the fundamental diagram
ρ 7→ f(ρ, w) and the “rescaled” fundamental diagrams ρ 7→ f±(ρ, w) attain
their maximal values at R(w)

.
= Rw(0), therefore both R± given in (3.7)

simply reduce to R defined in (4.2)1, namely R±(w) = R(w). In particular

f(R(w), w) = F (w) ≥ f±(R(w), w) =

{
F (w) if w ≤W±,
F± if w > W±,
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and clearly f± satisfies (4.1). In the present case the maps Q± : Ω×(0,+∞)→
[0,+∞) defined in (3.8) become

Q−(uL)
.
=


f−(uL) if ρL ≤ R(wL),

F (wL) if ρL > R(wL) and w ≤W−,
F− if ρL > R(wL) and w > W−,

Q+(uR, wL)
.
=


F (wL) if ρ∗(uR, wL) ≤ R(wL) and w ≤W+,

F+ if ρ∗(uR, wL) ≤ R(wL) and w > W+,

f+(u∗(uR, wL)) if ρ∗(uR, wL) > R(wL),

where u∗
.
= (ρ∗, w∗) is defined in (3.5).

We run computer assisted numerical simulations of the FTL model (3.2),
(4.4) with p(ρ)

.
= ργ , γ .

= 2. The outputs of some simulations are pre-
sented in Figures 2–7 and show a good agreement with the Riemann solver
RSR−,R+ for (1.1), (1.3), (1.4), (4.4) given in Definition 3.1, at least in the
cases under consideration.

We construct below RSR−,R+ [uL, uR] for the cases considered in Fig-
ures 2–7, with the aim to make Definition 3.1 more clear. We mainly fo-
cus on computing Q(uL, uR), because then it is easy to get û(uL, uR) and
ǔ(uL, uR). At last we describe RS−[uL, û(uL, uR)] and RS+[ǔ(uL, uR), uR]
because then it is easy to construct RSR−,R+ [uL, uR] by applying Defini-
tion 3.1. For simplicity, below we use the following notation

(4.5) û = û(uL, uR), ǔ = ǔ(uL, uR), u∗ = u∗(uR, wL).

(F1.a) For an initial datum as in Figure 2, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f+(u∗).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR). S1(ǔ, u∗) is stationary and for this reason the
ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̌.

(F1.b) For an initial datum as in Figure 3, we have

ρL < R−(wL) =⇒ Q−(uL) = f−(uL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f−(uL).

RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the jux-
taposition of the 1-shock S1(ǔ, u∗) and the 2-contact discontinu-
ity C2(u∗, uR). S1(uL, û) is stationary and for this reason the ρ-
component of RSR−,R+ [uL, uR] does not attain the value ρ̂.

(F1.c) For an initial datum as in Figure 4, we have

ρL < R−(wL) =⇒ Q−(uL) = f−(uL)
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F+.
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Figure 2. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.4) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F1.a).
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Figure 3. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.4) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F1.b).

RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the juxta-
position of the 1-rarefaction R1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR).

(F1.d) For an initial datum as in Figure 5, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F+.

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-rarefaction R1(ǔ, u∗) and the 2-contact dis-
continuity C2(u∗, uR). Notice that v+(uR) > wL and for this reason
ρ∗ = 0.

(F1.e) For an initial datum as in Figure 6, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = F−.
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Figure 4. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.4) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F1.c).
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Figure 5. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.4) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F1.d).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR).

(F1.f) For an initial datum as in Figure 7, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F−.

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-rarefaction R1(ǔ, u∗) and the 2-contact dis-
continuity C2(u∗, uR). Notice that v+(uR) > wL and for this reason
ρ∗ = 0.

We conclude this subsection with the following remark.
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Figure 6. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.4) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F1.e).
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Figure 7. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.4) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F1.f).

Remark 4.2. The velocity functions (4.4) imply that along R± a vehicle
with the Lagrangian marker w > 0 has maximal speed

v±(0, w) =

{
w if w ≤W±,
F±
F (w) w if w > W±.

As a consequence, the capacities of the road sections affect the maximal
speed of only the fast vehicles. Yet high speed vehicles may be almost
“blocked”. Indeed, we have limw→+∞

w
F (w) = 0, see for instance (4.3)2 for

the case p(ρ) = ργ , γ > 0. A possible realistic motivation is that the
capacities of the road sections are mainly linked to the quality of the road
surface. It is then reasonable to assume that, in poor words, the change
in the quality of the road surface (e.g., from asphalt to terrain) does not
affect very slow heavy trucks, e.g., a bulldozer, while it deeply affects the
performance of race cars, e.g., a Ferrari 599 GTO. In this respect, the second
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approach seems more reasonable when the change in the quality of road
surface is not “drastic”, see Subsection 4.2.

4.2. Second option. Motivated by Remark 4.2, in this subsection, we
consider

(4.6)
v±(ρ, w)

.
=

{
F±/ρ if w > W± and f(ρ, w) > F±,

v(ρ, w) otherwise,

f±(ρ, w)
.
= ρ v±(ρ, w),

where v is defined in (2.3)1. Clearly f± satisfies (4.1). The above choice for
f± is motivated as follows: the capacity F± of the road R± has an effect on
the traffic only when it is achieved.

We run computer assisted numerical simulations of the FTL model (3.2),
(4.6) with p(ρ)

.
= ργ , γ .

= 2. The outputs of some simulations are pre-
sented in Figures 8–13 and show a good agreement with the Riemann solver
RSR−,R+ for (1.1), (1.3), (1.4), (4.6) given in Definition 3.1, at least in the
cases under consideration.

We construct below RSR−,R+ [uL, uR] for the cases considered in Fig-
ures 8–13, with the aim to make Definition 3.1 more clear. For simplicity,
below we use the notation introduced in (4.5).

(F2.a) For an initial datum as in Figure 8, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = F−.

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR).
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Figure 8. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.6) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F2.a).
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(F2.b) For an initial datum as in Figure 9, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = F−.

RS−[uL, û] is the 1-contact discontinuity C1(uL, û), andRS+[ǔ,uR]
is the juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact dis-
continuity C2(u∗, uR). C1(uL, û) is stationary and for this reason
the ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̂.
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Figure 9. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.6) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F2.b).

(F2.c) For an initial datum as in Figure 10, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f+(u∗).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR). S1(ǔ, u∗) is stationary and for this reason the
ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̌. No-
tice that û = u∗.

(F2.d) For an initial datum as in Figure 11, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F−.

RS−[uL, û] is the 1-contact discontinuity C1(uL, û), andRS+[ǔ,uR]
is the juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact dis-
continuity C2(u∗, uR). C1(uL, û) is stationary and for this reason
the ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̂.

(F2.e) For an initial datum as in Figure 12, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F+.
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Figure 10. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.6) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F2.c).
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Figure 11. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.6) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F2.d).

RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the juxta-
position of the 1-contact discontinuity C1(ǔ, u∗) and the 2-contact
discontinuity C2(u∗, uR). C1(ǔ, u∗) is stationary and for this reason
the ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̌.
Notice that ρ∗ = ρR but w∗ 6= wR.

(F2.f) For an initial datum as in Figure 13, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F+.

RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the juxta-
position of the 1-contact discontinuity C1(ǔ, u∗) and the 2-contact
discontinuity C2(u∗, uR). C1(ǔ, u∗) is stationary and for this reason
the ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̌.
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Figure 12. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.6) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F2.e).
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Figure 13. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (4.6) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (F2.f).

5. ARZ model for two roads with different speed limits

In this section, we consider two roads R−
.
= (−∞, 0) and R+

.
= [0,+∞)

with speed limits V− > 0 and V+ > 0, respectively. Then the evolution of
traffic along R can be described by (1.1), (1.3), (1.4) with v± : Ω→ [0,+∞)
such that

(5.1) v±(u) ≤ V± for any u ∈ Ω ⇐⇒ v±(0, w) ≤ V± for any w > 0.

The velocity map ρ 7→ v(ρ, w) fails to satisfy (5.1) if and only if

v(0, w) > V± ⇐⇒ w > V±.

For this reason we necessarily have v±(·, w) 6≡ v(·, w) for all w > V±.
In the following two subsections, we propose two possible choices for the

velocities v± satisfying (5.1) and such that v±(·, w) ≡ v(·, w) for all w ≤ V±.
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5.1. First option. In this subsection we consider problem (1.1), (1.3),
(1.4) with

(5.2) v±(ρ, w)
.
=

{
v(ρ, w) if w ≤ V±,
V±
w v(ρ, w) if w > V±,

f±(u)
.
= ρ · v±(u),

where v is defined in (2.3)1. Clearly v± satisfy (5.1). Notice that both the
fundamental diagram ρ 7→ f(ρ, w) and the “rescaled” fundamental diagrams
ρ 7→ f±(ρ, w) attain their maximal values at R(w)

.
= Rw(0), therefore R±

given in (3.7) simply reduce to R defined in (4.2)1, namely R±(w) = R(w).
In particular

f(R(w), w) = F (w) ≥ f±(R(w), w) =

{
F (w) if w ≤ V±,
V±

F (w)
w if w > V±.

In the present case the maps Q± : Ω × (0,+∞) → [0,+∞) defined in (3.8)
become

Q−(uL)
.
=


f−(uL) if ρL ≤ R(wL),

F (wL) if ρL > R(wL) and w ≤ V−,
V−

F (wL)
wL

if ρL > R(wL) and w > V−,

Q+(uR, wL)
.
=


F (wL) if ρ∗(uR, wL) ≤ R(wL) and w ≤ V+,
V+

F (wL)
wL

if ρ∗(uR, wL) ≤ R(wL) and w > V+,

f+(u∗(uR, wL)) if ρ∗(uR, wL) > R(wL),

where u∗
.
= (ρ∗, w∗) is defined in (3.5).

We run computer assisted numerical simulations of the FTL model (3.2),
(5.2) and take p(ρ) = ργ , γ = 2. In Figure 14–19 we plot r and w for some
initial data of interest. We see a good agreement with the Riemann solver
RSR−,R+ for (1.1), (1.3), (1.4), (5.2) given in Definition 3.1, at least in the
cases under consideration.

We construct below RSR−,R+ [uL, uR] for the cases considered in Fig-
ure 14–19, with the aim to make Definition 3.1 more clear. For simplicity,
below we use the notation introduced in (4.5).

(V1.a) For an initial datum as in Figure 14 we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f+(u∗).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR). S1(ǔ, u∗) is stationary and for this reason the
ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̌.
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Figure 14. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.2) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V1.a).

(V1.b) For an initial datum as in Figure 15, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL)

}
=⇒ Q(uL, uR) = F+(wL).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-rarefaction R1(ǔ, u∗) and the 2-contact dis-
continuity C2(u∗, uR).
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Figure 15. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.2) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V1.b).

(V1.c) For an initial datum as in Figure 16, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = F−(wL).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR).
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Figure 16. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.2) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V1.c).

(V1.d) For an initial datum as in Figure 17 the construction of
RSR−,R+ [uL, uR] is analogous to that described in (V1.c). Notice
that differently from case (V1.c) here wR < wL.
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Figure 17. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.2) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V1.d).

(V1.e) For an initial datum as in Figure 18, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f+(u∗).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR). S1(ǔ, u∗) is stationary and for this reason the
ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̌.

(V1.f) For an initial datum as in Figure 19, we have

ρL < R−(wL) =⇒ Q−(uL) = f−(uL)
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL)

}
=⇒ Q(uL, uR) = f−(uL).
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Figure 18. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.2) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V1.e).

RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the juxta-
position of the 1-rarefaction R1(ǔ, u∗) and the 2-contact discon-
tinuity C2(u∗, uR). S1(uL, û) is stationary and for this reason the
ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̂. No-
tice that v+(uR) > wL and for this reason ρ∗ = 0.
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Figure 19. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.2) and the initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V1.f).

5.2. Second option. In this subsection we consider problem (1.1), (1.3),
(1.4) with

(5.3)
v±(u)

.
= min{V±, v(u)} =

{
V± if w > V± and ρ < p−1(w − V±),

v(u) otherwise,

f±(u)
.
= ρ · v±(u),
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where v is defined in (2.3)1. Observe that in the present case R±(w) and
u∗(uR, wL) defined respectively in (3.5) and (3.7) become

R±(w)
.
= max

{
Rw(0), p−1

(
[w − V±]+

)}
,

u∗(uR, wL)
.
=
(
p−1
(
[wL − v+(uR)]+

)
, wL

)
.

We run computer assisted numerical simulations of the FTL model (3.2),
(5.3) with p(ρ) = ργ , γ = 2. In Figures 20–25 we plot r and w for some
initial data of interest. We see a good agreement with the Riemann solver
RSR−,R+ for (1.1), (1.3), (1.4), (5.3) given in Definition 3.1, at least in the
cases under consideration.

We construct below RSR−,R+ [uL, uR] for the cases considered in Fig-
ures 20–25, with the aim to make Definition 3.1 more clear. For simplicity,
below we use the notation introduced in (4.5).

(V2.a) For an initial datum as in Figure 20 we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = F−(wL).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR).
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Figure 20. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.3) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V2.a).

(V2.b) For an initial datum as in Figure 21, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL)

}
=⇒ Q(uL, uR) = F−(wL).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-rarefaction R1(ǔ, u∗) and the 2-contact dis-
continuity C2(u∗, uR).
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Figure 21. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.3) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V2.b).

(V2.c) For an initial datum as in Figure 22, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL)

}
=⇒ Q(uL, uR) = F−(wL).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR).
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Figure 22. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.3) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V2.c).

(V2.d) For an initial datum as in Figure 23, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f+(u∗).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR). S1(ǔ, u∗) is stationary and for this reason the
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ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̌. No-
tice that u∗ = û.
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Figure 23. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.3) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V2.d).

(V2.e) For an initial datum as in Figure 24, we have

ρL < R−(wL) =⇒ Q−(uL) = f−(uL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f+(u∗).

RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the jux-
taposition of the 1-shock S1(ǔ, u∗) and the 2-contact discontinu-
ity C2(u∗, uR). S1(ǔ, u∗) is stationary and for this reason the ρ-
component ofRSR−,R+ [uL, uR] does not attain the value ρ̌. Notice
that u∗ = û.
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Figure 24. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.3) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V2.e).

(V2.f) For an initial datum as in Figure 25, we have

ρL < R−(wL) =⇒ Q−(uL) = f−(uL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f−(uL).
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RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the jux-
taposition of the 1-shock S1(ǔ, u∗) and the 2-contact discontinu-
ity C2(u∗, uR). S1(uL, û) is stationary and for this reason the ρ-
component of RSR−,R+ [uL, uR] does not attain the value ρ̂.
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Figure 25. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (5.3) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (V2.f).

6. ARZ model for two roads with different capacities and speed
limits

In this section we consider two roads R−
.
= (−∞, 0) and R+

.
= [0,+∞)

with capacities F− > 0 and F+ > 0, respectively, and with speed limits
V− > 0 and V+ > 0, respectively. Then the evolution of traffic along R can
be described by (1.1), (1.3), (1.4) with f± : Ω→ [0,+∞) satisfying (4.1) and
v± : Ω→ [0,+∞) satisfying (5.1).

6.1. First option. In analogy with Subsections 4.1 and 5.1, here we take

(6.1)

v±(ρ, w)
.
= min

{
min{F±, F (w)}

F (w)
,
min{V±, w}

w

}
v(ρ, w)

=


v(ρ, w) if w ≤W± and w ≤ V±,
F±
F (w) v(ρ, w) if w > W± and w ≤ V±,
V±
w v(ρ, w) if w ≤W± and w > V±,

min
{

F±
F (w) ,

V±
w

}
v(ρ, w) if w > W± and w > V±,

where F and W± are defined (4.2)2 and (4.2)3, respectively.
We run computer assisted numerical simulations of the FTL model (3.2),

(6.1) with p(ρ) = ργ , γ = 2. In Figures 26–31 we plot r and w for some
initial data of interest. We see a good agreement with the Riemann solver
RSR−,R+ for (1.1), (1.3), (1.4), (6.1) given in Definition 3.1, at least in the
cases under consideration.
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We construct below RSR−,R+ [uL, uR] for the cases considered in Fig-
ures 26–31, with the aim to make Definition 3.1 more clear. For simplicity,
below we use the notation introduced in (4.5).

(FV1.a) For an initial datum as in Figure 26, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f+(u∗).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-shock S1(ǔ, u∗) and the 2-contact discon-
tinuity C2(u∗, uR). S1(ǔ, u∗) is a stationary shock and for this
reason the ρ-component of RSR−,R+ [uL, uR] does not attain the
value ρ̌.
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Figure 26. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.1) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV1.a).

(FV1.b) For an initial datum as in Figure 27, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL)

}
=⇒ Q(uL, uR) = F+(wL).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-rarefaction R1(ǔ, u∗) and the 2-contact
discontinuity C2(u∗, uR).

(FV1.c) For an initial datum as in Figure 28, we have

ρL < R−(wL) =⇒ Q−(uL) = f−(uL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(wL)

}
=⇒ Q(uL, uR) = f−(uL).

RS−[uL, û] is the 1-shock S1(uL, û), andRS+[ǔ, uR] is the juxta-
position of the 1-shock S1(ǔ, u∗) and the 2-contact discontinuity
C2(u∗, uR). S1(uL, û) is a stationary shock and for this reason
the ρ-component of RSR−,R+ [uL, uR] does not attain the value
ρ̂.
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Figure 27. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.1) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV1.b).
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Figure 28. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.1) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV1.c).

(FV1.d) For an initial datum as in Figure 29, we have

ρL < R−(wL) =⇒ Q−(uL) = f−(uL)
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL)

}
=⇒ Q(uL, uR) = f−(uL).

RS−[uL, û] is the 1-shock S1(uL, û), andRS+[ǔ, uR] is the juxta-
position of the 1-shock S1(ǔ, u∗) and the 2-contact discontinuity
C2(u∗, uR). S1(uL, û) is a stationary shock and for this reason
the ρ-component of RSR−,R+ [uL, uR] does not attain the value
ρ̂.

(FV1.e) For an initial datum as in Figure 30, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(uL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F+.
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Figure 29. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.1) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV1.d).

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-rarefaction R1(ǔ, u∗) and the 2-contact
discontinuity C2(u∗, uR).
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Figure 30. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.1) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV1.e).

(FV1.f) For an initial datum as in Figure 31, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(uL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F−.

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
juxtaposition of the 1-rarefaction R1(ǔ, u∗) and the 2-contact
discontinuity C2(u∗, uR). Notice that v+(uR) > wL and for this
reason ρ∗ = 0.
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Figure 31. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.1) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV1.f).

6.2. Second option. In analogy with Subsections 4.2 and 5.2, here we
take

(6.2) v±(ρ, w)
.
=



min{F±/ρ, V±} if w > max{W±, V±}, f(ρ, w) > F±

and ρ < p−1(w − V±),

F±/ρ if w > W±, f(ρ, w) > F±

and w ≤ V±,
F±/ρ if w > W±, f(ρ, w) > F±

and ρ ≥ p−1(w − V±),

V± if w > V±, ρ < p−1(w − V±)

and w ≤W±,
V± if w > V±, ρ < p−1(w − V±)

and f(ρ, w) ≤ F±,
v(ρ, w) otherwise,

where F and W± are defined (4.2)2 and (4.2)3, respectively.
We run computer assisted numerical simulations of the FTL model (3.2),

(6.2) with p(ρ) = ργ , γ = 2. In Figures 32–37 we plot r and w for some
initial data of interest. We see a good agreement with the Riemann solver
RSR−,R+ for (1.1), (1.3), (1.4), (6.2) given in Definition 3.1, at least in the
cases under consideration.

We construct below RSR−,R+ [uL, uR] for the cases considered in Fig-
ures 32–37, with the aim to make Definition 3.1 more clear. For simplicity,
below we use the notation introduced in (4.5).

(FV2.a) For an initial datum as in Figure 32, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL)
ρ∗ > R+(wL) =⇒ Q+(uR, wL) = f+(u∗)

}
=⇒ Q(uL, uR) = f+(u∗).
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RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the jux-
taposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR). S1(ǔ, u∗) is stationary and for this reason the
ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̌.
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Figure 32. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.2) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV2.a).

(FV2.b) For an initial datum as in Figure 33, we see that the construction
of the solution is analogous to that described in (FV2.a). Notice
that differently from case (FV2.a), here F+ < F−.
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Figure 33. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.2) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV2.b).

(FV2.c) For an initial datum as in Figure 34, we see that the construction
of the solution is analogous to that described in (FV2.a). Notice
that differently from case (FV2.a), here V− < V+.

(FV2.d) For an initial datum as in Figure 35, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F−.
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Figure 34. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.2) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV2.c).

RS−[uL, û] is the 1-contact discontinuity C1(uL, û), and
RS+[ǔ, uR] is the juxtaposition of the 1-shock S1(ǔ, u∗) and the
2-contact discontinuity C2(u∗, uR). C1(uL, û) is stationary and
for this reason the ρ-component of RSR−,R+ [uL, uR] does not
attain the value ρ̂.
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Figure 35. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.2) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV2.d).

(FV2.e) For an initial datum as in Figure 36, we have

ρL < R−(wL) =⇒ Q−(uL) = f−(uL)
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL)

}
=⇒ Q(uL, uR) = f−(uL).

RS−[uL, û] is the 1-shock S1(uL, û), and RS+[ǔ, uR] is the jux-
taposition of the 1-shock S1(ǔ, u∗) and the 2-contact disconti-
nuity C2(u∗, uR). S1(uL, û) is stationary and for this reason the
ρ-component of RSR−,R+ [uL, uR] does not attain the value ρ̂.
Notice that ρ∗ = ρR but w∗ 6= wR.
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Figure 36. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.2) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV2.e).

(FV2.f) For an initial datum as in Figure 37, we have

ρL > R−(wL) =⇒ Q−(uL) = F−(wL) = F−
ρ∗ < R+(wL) =⇒ Q+(uR, wL) = F+(wL) = F+

}
=⇒ Q(uL, uR) = F−.

RS−[uL, û] is the 1-rarefaction R1(uL, û), and RS+[ǔ, uR] is the
2-contact discontinuity C2(ǔ, uR).
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Figure 37. The approximate density (3.3), center, and ap-
proximate Lagrangian marker (3.4), right, corresponding to
FTL model (3.2), (6.2) and initial datum (uL, uR) ∈ Ω2,
left. The solution obtained by applying the Riemann solver
RSR−,R+ is described in (FV2.f).

7. ARZ model with point constraint

In this section we briefly show a possible application of the previous results.
Consider a road with a pointwise bottleneck at x = 0 characterized by
either maximal capacity F0 or speed limit V0. Beside the ARZ model (2.1)
we enforce in the former case the condition

(7.1) f(u)(t, 0±) ≤ F0, t > 0
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and in the latter case the condition

(7.2) v(t, 0+) ≤ V0, t > 0.

As in [18], we introduce an interval Iε
.
= (−ε, ε), ε > 0, and enforce

therein in the former case the condition

(7.3) f(u(t, x)) · 1Iε(x) ≤ F0

and in the latter case the condition

(7.4) v(u(t, x)) · 1Iε(x) ≤ V0.
Then we envisage two approaches to construct the approximate solutions

uεF0
and uεV0 to the approximate constrained Riemann problem (2.1), (7.3),

(1.5) and (2.1), (7.4), (1.5), respectively: either one can apply a wave-
front tracking method analogous to that proposed in [9] and based on the
Riemann solvers already obtained in Sections 4 and 5, or one can introduce
microscopic FTL models analogous to those obtained in Sections 4 and 5.
In both cases, the next step is to let ε go to 0+ and define the limits of uεF0

and uεV0 as the solutions to the constrained Riemann problems (2.1), (2.2),
(7.1), (1.5) and (2.1), (2.2), (7.2), (1.5), respectively.

The first approach is quite standard. We give some more details on the
second approach. If we are dealing with constraint (7.3), then in analogy to
Subsections 4.1 and 4.2, we can consider the FTL model (3.1), (3.2) with
either

v(ρ, w, x)
.
=

{
F0
F (w) v(ρ, w) if x ∈ Iε and w > W,

v(ρ, w) otherwise,

f(u)
.
= ρ · v(u),

or

v(ρ, w, x)
.
=

{
F0
ρ if x ∈ Iε, w > W and f(ρ, w) > F0,

v(ρ, w) otherwise,

f(u)
.
= ρ · v(u),

where v is defined in (2.3)1 and W .
= F−1(F0), where F is defined in (4.2)2.

If we are dealing with constraint (7.4), then in analogy to Subsections 5.1
and 5.2, we can consider the FTL model (3.1), (3.2) with either

v(ρ, w, x)
.
=

{
V0
w v(ρ, w) if x ∈ Iε and w > V0,

v(ρ, w) otherwise,

f(u)
.
= ρ · v(u),

or

v(ρ, w, x)
.
=

{
V0 if x ∈ Iε, w > V0 and v(ρ, w) > V0,

v(ρ, w) otherwise,

f(u)
.
= ρ · v(u).
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We stress that we are focused on the waves created at x = ±ε and x = 0,
as well as on the interactions among these waves. On the contrary, the
remaining waves created at x = ±δ are not of interest, as well as their
interactions with the other waves. For this reason δ > 0 has to be chosen
big enough and only the solution in a vicinity of Iε has to be studied.

Again, numerical simulations for carefully identified sets of data can select
physically reasonable Riemann solvers. However, this is not the aim of the
present paper and is deferred to future works.
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