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Abstract. In this paper we aim to demonstrate how physical perspective
enriches statistical analysis when dealing with a complex system of many in-
teracting agents of non-physical origin. To this end, we discuss analysis of
urban public transportation networks viewed as complex systems. In such
studies, a multi-disciplinary approach is applied by integrating methods in
both data processing and statistical physics to investigate the correlation be-
tween public transportation network topological features and their operational
stability. These studies incorporate concepts of coarse graining and clusteri-
zation, universality and scaling, stability and percolation behavior, diffusion
and fractal analysis.

1. Introduction

One of the most prominent scientists of our time, Steven Hawking, when
asked about the main trends of science in the twenty-first century replied
that he thinks it will be the century of complexity (see [61]). Indeed, it is
becoming more apparent how complexity has gradually become one of the
central concepts of modern science and, on a more general scale, of the whole
human culture [48, 73]. Complex systems of many interacting agents share
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an essential common property: they display collective behavior that does
not follow trivially from the behaviors of their individual parts. Moreover,
their behavior is characterized by a set of inherent features that include
self-organization, emergence of new functionalities, extreme sensitivity to
small variations in their initial conditions, and governing power laws (fat-tail
behavior, see [41]). Complex system science – a new emerging field – aims
to understand such behavior from a unified perspective and to formulate its
description in a quantitative and predictable manner.

The methodological and conceptual framework of complex system science
originates from many traditional disciplines, statistical physics being proba-
bly one of the most important ingredients [3,33,56,63]. Another important
ingredient is a universal language that allows for the description of various
complex systems. This language originates from graph theory and is cur-
rently widely known as complex network science, see e.g. [1, 20, 53, 57] and
references therein. The latter serves as a framework to formalize a system
of interacting agents by allowing each agent to act as network node, where
various kinds of interaction can be described as (weighted or unweighted,
directed or undirected, multiple or unique) links. The former equips com-
plexity science with an arsenal of tools and concepts traditionally used in
physics to describe collective phenomena.

In the case study discussed in this paper, we aim to demonstrate how a
physical perspective can enrich statistical analysis and data processing when
dealing with a complex system of many interacting agents “non-physical”
in nature. To this end, we have chosen to consider public transportation
networks where the data for each public transport network (PTN) includes
information about the routes and the locations of each station. Using this
information, the question is, what new insights can one gain by appealing
to physical concepts and ideas for its analysis?

The set-up of the paper is as follows: in the next Section 2, a short
review of some of the papers where a public transportation system has been
analyzed from a complex system science perspective is provided. Then
concepts of coarse graining and clusterization of PTNs are further discussed
in Section 3. In the subsequent sections we discuss the search for universal
features in network structure and the power laws (scaling) governing node-
degree distributions (Section 4); analysis of a networks behavior to failure
of their parts and its resemblance to percolation phenomenon (Section 5);
the phenomenon of diffusion and its contribution to PTN modeling and
studies of fractal properties of transportation networks (Section 6). Finally,
in Section 7, we conclude with some final statements and outlook.

It is our pleasure and honor to submit this paper to the Festschrift dedi-
cated to Prof. Dr. Yuri Kozitsky on the occasion of his 70th birthday. His
contributions to the analysis of collective behavior in condensed matter, to
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complex network and complex system science are well known and highly
appreciated. This in fact motivated us in choosing the topic for this paper.

2. PTN from complex network perspective: a review

Analysis of PTNs as complex systems relies on their presentation in the form
of a graph, i.e. of a complex network. Such analysis began comparatively
recently. One of the first papers appeared in 2002, where the topological
properties of the Boston subway [49] were analysed. Subsequently, similar
analysis has been performed for many other PTNs around the world. The
types of PTNs investigated include the subway [49, 59], bus [37, 70, 74, 75],
rail [60], air [34–36] and various combinations of these [2, 26,64,67].

The general goal of these and other similar studies was to present a PTN
in a form of a graph (complex network) and studying different features of the
graph presentation to gain more information about the properties of a PTN.
Thus far, a number of different topological representations of a PTN have
been developed, by attributing different constituents of a PTN to vertices
(interchangeable with nodes) and edges (interchangeable with links) of the
corresponding graph. To give an example, in Fig. 1 we show a subset of a
PTN map of Lviv (Ukraine) and some of the graphical representations. In
the L-space representation, the stations are represented by graph nodes, the
nodes are connected if the corresponding stations are adjacent in a route
whereas multiple links are substituted by a single one. The corresponding
L′-space representation keeps multiple links. In particular, it allows one
to study the so-called “harness” behavior of PTN routes. This concept
describes how different routes tend to follow similar paths for a certain
number of stations. The harness distribution P (r, s) can be defined as the
number of sequences of consecutive stations s, serviced by r parallel routes
[11, 26]. A similar feature has also been studied for weighted networks in
[74].

The L-space topology is ideal for studying the connectivity of networks
which is crucial for PTN operation. To this end, network metrics such as the
mean shortest path length or the largest connected component size serve as
import indicators of PTN operation. This space has been applied in many
different studies of real world networks [26,49,64].

In the P-space representation, similar to L-space, each station is presented
as a node, however, here links join together all nodes that belong to a par-
ticular route and form a complete subgraph. Different subgraphs are then
joined via common stations, that share different routes. This representation
has been applied in many studies [26, 32, 59, 60, 64, 74]. It is useful, in par-
ticular for determining the mean number of vehicle changes when traveling
between any two points on a PTN service network. Similar to the L-space
topology, in P-space multiple links do not exist.
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Figure 1. A subsection of the Lviv PTN with two routes
(No 5 and 7) and seven stops and its different graph repre-
sentations, L-, L′-, P-, P′-, B-, and C-“spaces”. See text for
more discussion.

In the so-called B-space [15, 26], one constructs a bipartite graph that
contains nodes of two types: node-stations and node-routes. Naturally, the
single-mode projection of the B-space graph to the nodes-stations leads to
P-space. In turn, an analogous projection to the nodes-routes leads to the
so-called C-space [26]. Here, one considers how routes are connected to
each other and describes how routes are linked throughout the network.
In C-space, if any two routes service the same station, they are obviously
linked.
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These and similar presentations of PTNs in a complex network form
enable one to answer different questions about the functional features of
PTNs of many cities and to study the relationship of these features with
the topology of corresponding complex networks. The topics of analysis
included understanding the collective phenomena taking place on the net-
work, in particular analysis of PTN robustness to random breakdown or
targeted removal of their constituents [12,13,25], development of a number
of simulated growth models for PTNs [11, 70, 75], studies of their spatial
embedding [8–10, 24, 26, 70]. This list is far from being complete [18, 38].
In general, such analysis has revealed that PTNs constructed in cities with
different geographical, cultural and historical background share a number
of basic common topological properties. They appear to be strongly corre-
lated structures with high values of clustering coefficients and comparatively
low mean shortest path values. Their node degree distributions are often
found to follow exponential or power-law decay. Moreover, some of these
observables can be employed as key performance indicators in aid of further
developing efficient and stable PTNs. Referring the interested reader to the
original publications, in the forthcoming sections we plan to use some of
the previously obtained results together with new data (mainly for PTNs
of Lviv and Bristol [44]) to show how the physical perspective enriches the
analysis of complex PTN networks.

3. Coarse graining in systems of interacting particles vs PTN clus-
terisation

In statistical physics, coarse graining reduces the number of degrees of free-
dom in a system of interacting particles, thus enabling its analytical treat-
ment or computer simulation. In a coarse grained description, one smooths
over fine structure of a system passing to a new system with “rescaled”
constituents and interactions between them. Sometimes, the properties of
such rescaling enable one to describe the large-scale behavior of a system
as a whole, see e.g. [40, 42, 47, 68]. A similar technique is also at hand
as an effective method to simplify complex network descriptions in public
transportation analysis [31,44].

City Population Area N R Vehicle
km2 types

Lviv 721 301 182 768 77 BET
Bristol 535 907 110 1474 143 BF

Table 1. General information about the cities and their
PTNs. N : number of stops, R: number of routes, vehicle
types: B (bus), E (electric trolley), T (tram), F (ferry).
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Here we provide an example of how coarse graining is applied in preparing
a (simplified) database for PTN analysis. As a case study, we demonstrate
this taking the PTNs of Lviv (Ukraine) and Bristol (UK). Both cities and
their PTNs are of comparable size, see Table 1, and we use some of the
results obtained for their PTNs as as will be illustrated in this and forth-
coming sections [18,19,44].

One of the common features of urban PTNs is the existence of stations
that are situated in close proximity to one another. Thus, very often there is
no need to consider such stops separately. One can use this fact to simplify
the transport networks before analysis. To prepare the database, one can
merge the stops that fall within a reasonable walking distance. To this end, a
density-based clustering algorithm DBSCAN [22] has been applied to coarse
grain nodes in Lviv and Bristol PTNs in the L-space representation [44].
This algorithm considers a minimal clustering radius R and the minimal
number of the points to organize a cluster. The algorithm divides all the
points in a network into different categories: 1

• Core points. A point p is called a core point if it lies within a
clustering radius R from a core point c,
• Density reachable points. A point p is called reachable from a core

point c if there exists a chain of points p1, p2, ..., p, p1 = c and a
point pi−1 is directly reachable from pi,
• Noise. A point p is called a noise point if it does not belong to any

cluster.

To receive meaningful results of the analysis, one should properly choose
the clustering radius R. If R is too small, no stops will be grouped into
clusters and if R is too large, all the stops will form one cluster, see Fig. 2.
Moreover, the maximal distance between the stops in a cluster should not
exceed a reasonable walking distance. Checking maximal inter-node dis-
tance d in a cluster provides additional criterion to choose R. Indeed, with
d too high one gets unrealistic situations when stops that are further away
from each other are considered as a single node. In Fig. 3 we show the
cumulative distribution of maximal distances d between the stops of each
cluster for different values of R. As one can see from Fig. 3, at R = 40 m
the maximal distances in clusters do not exceed a reasonable walking dis-
tance of 100 m. This suggests such value of R to be optimal and used in
the coarse-graining of two networks under discussion.

Note that the PTN coarse-graining procedure discussed in this section
heavily relies of the (Euclidean) distance between network nodes. This is
a typical feature of complex networks embedded in space. Besides PTNs,

1Core points together with their density reachable and directly density reachable points
form the clusters. Noise points in the particular case of stops clusterization were not
rejected.
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Figure 2. Coarse graining of network nodes in Lviv and
Bristol PTNs: dependence of the stops number N on the
clustering radius R (in meters).

other examples of spatial networks are given by other transportation net-
works, power grids, neural networks, and much more [6]. For spatial net-
works, the analysis of the topology alone can not disclose their properties
and is to be completed by the corresponding analysis in geographical space.
We will provide more insight on this issue in Section 6.

4. Universality and scaling

The prevailing sections of this paper involve explicitly or implicitly the con-
cept of universality. The search for universal – i.e. independent of system
details – features of wide classes of systems is inherent to physics. In statis-
tical physics, universality means that typical behavior of systems consisting
of many interacting parts is independent of system’s structural details. In
complex system science, such analysis very often means the search for com-
mon statistical laws that govern the behavior of systems of many interacting
agents. It has been found that in many cases such laws attain power law
asymptotes: probability of a rare event decays slower than predicted by a
central limit theorem. Special systematization is being suggested, it classi-
fies power-law statistics observed in different systems according to certain
archetypal reasons that cause it [16, 51, 54, 65]. In this respect it is similar
to distinguishing different universality classes in the theory of critical phe-
nomena, see e.g. [40,45]. Such power laws have been observed for the PTNs
too, as we show in several examples given below. The main reasons that
cause their appearance in PTN statistics are due to the so-called preferen-
tial attachment and optimization scenarios. The optimization scenario was
suggested by Benoit Mandelbrot [50] based on information theory. Within
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(a) R=30m (b) R=40m

(c) R=50m (d) R=60m

Figure 3. Cumulative distribution P (d) of maximal dis-
tances d between stops of each cluster in the PTNs of Lviv
and Bristol for four different values of clustering radius R.

this scenario, power laws appear as a result of optimization of the informa-
tion transmitted and its costs. Within the preferential attachment, in the
course of system evolution new elements tend to create links with those,
which already have more links. Sometimes such a scenario is phrased as
“the rich get richer”. One of the best known models where such a scenario
is realized was suggested by Herbert Simon [66].

As it was mentioned in Section 2, there are different ways to present a
PTN in a complex network form. Correspondingly, the nodes and links of
the complex network have different interpretations in different formalisms,
different “spaces” described in Section 2. An important quantity that char-
acterizes a PTN in all these representations is the node degree distribution
p(k). The function p(k) gives the probability that an arbitrary chosen node
of the network has k links. For the classical Erdös–Rényi random graph of
finite size N , p(k) is given by the binomial distribution [14]. It tends to a
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Poisson distribution as N → ∞. The last rapidly decays for large k and
is characterized by a typical scale. A similar property is shared by other
distributions that are characterized by an exponential decay:

(4.1) p(k) ∼ e−k/k̂, k →∞

– they are characterized by a typical scale, a decay constant k̂. Such a
property does not hold if the distribution possesses power-law asymptotics:

(4.2) p(k) ∼ k−γ , k →∞ .

Function (4.2) is a particular case of a more general class of homogeneous
functions [68] that share the following property:

(4.3) p(ak) = aλp(k) ,

for all nonzero a. Exponent λ is called the homogeneity degree. Obviously,
λ = −γ for p(k) given by (4.2).

Networks that are characterized by p(k) satisfying (4.3) are called scale-
free. Examples of scale-free behavior have been found in many networks
that represent natural and man-made systems, see e.g. [1, 20, 53, 57] and
references therein. There are some signals of scale-free behavior in PTNs
too [26,27]. In Fig. 4 we show cumulative node degree distributions P (k) =∑kmax

q=k p(q) for Lviv and Bristol PTNs [44]. As it can be seen from the
figures, both plots can be fitted reasonably well in a log-linear plot via
a linear dependency: corresponding P (k) functions manifest exponential
decay. However, for some PTNs, power laws hold. Due to obvious spatial

(a) (b)

Figure 4. Cumulative node degree distributions P (k) for
Lviv and Bristol PTN. A: L-space, B: P-space [44].

constraints power-law behavior is observed in the L-space for rather low
values of k. In Fig. 5 it is demonstrated for PTNs of several cities, with
the exponents γL = 4.48 (London), γL = 4.85 (Los Angeles) and γL = 2.62
(Paris) [26]. In P-space however, the construction of a network enables much
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higher node degrees as far as each route enters the network as a complete
graph of constituting stations. Cumulative node-degree distributions for the
same cities manifest scale-free behavior in a large region of k with γP = 3.89
(London), γP = 3.92 (Los Angeles), and γP = 3.70 (Paris) [26]. A similar
effect may be reached by coarse graining in L-space: joining a cluster of
stops to a single station, one naturally increases the degree of the coarse
grained station. In turn, this may lead to the scale-free behavior [62].
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Figure 5. (A): Node degree distributions of the PTNs of
London (circles), Los Angeles (stars) and Paris (squares) in
the L-space. (B): cumulative node degree distributions of
the same cities in the P-space [26].

Another peculiar feature of scale-free networks that makes their prop-
erties so different from the networks with an exponentially decaying node
degree distribution is the behavior of their distribution moments. For ex-
ponentially decaying p(k), all moments 〈km〉 are finite even in the limit
N → ∞. However, this is not the case for scale-free networks. Indeed for
an infinite network with p(k) given by (4.2) only lower moments 〈km〉 with
m < λ− 1 converge. As we will see in the forthcoming sections, this feature
leads to essential effects even in the case of a finite-size PTN.

5. Percolation vs PTN stability

Percolation is an archetypal example of collective behavior. It finds analo-
gies in different many-particle systems besides phenomenon of fluid per-
colating in a porous media and outside physics in its classical sense too
[21, 69]. Different phenomena occurring on complex networks are related
to percolation. What methods are available which enable the construction
of a network containing a giant cluster and moreover what would be the
properties of the network when this cluster appears? For a given connected
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network, what are the strategies to destroy a giant cluster, and how robust is
the network when different attack scenarios are applied? These and similar
questions give rise to the application of percolation theory and its ideas in
the network description and answering them sheds light on many common
features shared between percolation and phenomena that occur on complex
networks [12,17,39].

Percolation as a concept has been widely used in PTNs analysis to answer
questions about their stability to different types of events [12,13,25,28], see
also Refs. [18, 38] for a review. Such events influence the operational prop-
erties and consequently decrease the connectivity of a network. In critical
cases, they lead to overall network collapse. One discriminates between two
categories of harmful events in a network: random failures and targeted
attacks. Random failures might be caused by car accidents, weather condi-
tions, substantial traffic jams, etc. Targeted attacks include terrorist acts,
strikes, etc. Targeted attacks usually occur at the most important parts
of the network to cause the most critical damages. Attack simulation pro-
vides an effective way for network stability assessment. A common process
to model different types of attacks on PTN is to remove constituents of
the corresponding graph according to certain rules (attack scenario) and to
study network robustness to such removals. Different indicators are at hand
to monitor network robustness. The inverse mean shortest path length and
the size of the largest connected components are the most common ones.

As an example, in Fig. 6 we demonstrate changes in the normalized size
of the largest connected component S of Lviv and Bristol PTNs caused
by removing a share c of their nodes. Due to network inhomogeneity such
removal can be done in different ways. Within the simulation, during the
random attack scenario (denoted RA in the plots) the nodes are removed at
random. For the targeted attacks, the most important nodes are removed
first. To this end, we have chosen two indices to evaluate node importance:
the node degree k and the node betweenness centrality Cβ. The first index
measures the number of links of a given nodes, the second measures the
number of shortest paths between all other nodes of the network that go
through the given one. The structure of the network changes during an
attack, so the node indices do. Therefore, the nodes were removed either
according to the lists prepared before the attack, or the lists were updated
during each simulation step. Corresponding curves are denoted in the plots
as k and ki for the highest node degree attack scenario and Cβ and Ciβ for
the highest betweenness centrality scenario.

Plots of Fig. 6 demonstrate typical features of behavior of complex net-
works under attacks: they are robust with respect to random removal of
their constituents (slow decay of the curves at RA scenario) and vulnera-
ble to the targeted attacks. A useful indicator of network robustness has
been proposed in general context in Ref. [58] and further exploited for PTN
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(a) Bristol, L-space (b) Lviv, L-space

(c) Bristol, P-space (d) Lviv, P-space

(e) Bristol, P-space (f) Lviv, P-space

Figure 6. Changes in the largest connected component S
of Lviv and Bristol PTNs caused by removal (attack) of a
share c of the corresponding complex network nodes in L-,
P-, and C-spaces. Attacks are performed randomly (RA)
or according to the node lists ordered by the initial node
degree (ki), recalculated after each attack step node degree
(k), initial betweenness centrality (Ciβ) and recalculated after
each attack step betweenness centrality (Cβ).



Physicist’s approach to public transportation networks... 81

analysis in [13]. To this end, one estimates the area A under each S(c) plot:

(5.1) A =

∫ 1

0
S(c)dc

and further uses it to quantify network robustness to attacks: the larger the
area, the more robust the network. Corresponding values of A for different
attacks are given in Table 2.

Space City RA ki k Ciβ Cβ

L Bristol 0.304 0.125 0.109 0.159 0.095
Lviv 0.234 0.087 0.075 0.159 0.059

P Bristol 0.498 0.438 0.439 0.416 0.31
Lviv 0.497 0.423 0.403 0.4 0.321

C Bristol 0.481 0.432 0.404 0.395 0.343
Lviv 0.498 0.47 0.464 0.465 0.426

Table 2. Lviv and Bristol PTNs robustness A (5.1) to at-
tacks of different types. See caption of Fig. 6 for the expla-
nation of attack types.

The simulation results can give many useful insights. For example, the
attack simulations for Lviv and Bristol PTNs showed that both cities in
L-, P-, and C-space react in the same way to different types of attacks (see
Fig. 6). The least harmful was the random attack simulation, while the
most dangerous were attacks at the nodes with the highest betweenness
centrality (with resorting of the “importance lists”). The simulations also
showed that Bristol PTN is more resilient in L-space than Lviv PTN. The
last observation can be also explained on the base of the analytic results
available for infinite uncorrelated networks [12]. The Molloy–Reed criterion
[52] allows to predict the stability of a network to random attacks having
only a couple of its properties. It states that the giant connected component
is present in any uncorrelated network if

(5.2) κ =
〈k2〉
〈k〉
≥ 2,

where 〈k〉 and 〈k2〉 stand for mean and mean square node degree corre-
spondingly. The higher κ, the more stable the network. Although this
criterion has been derived for infinite uncorrelated networks, the value of
the Molloy–Reed parameter κ has been used to predict the robustness of
a PTN: one expects a network with a higher value of κ to be more robust
with respect to random removal of its parts [12, 13]. Such an estimate is
of most use to evaluate network stability in L-space. In P- and C-space,
the networks are well connected by the nature of construction, therefore
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the corresponding values of κ are very high. In Table 3, we show values of
the Molloy–Reed parameter κ (5.2) for Lviv and Bristol PTNs. As one can
see comparing Tables 2 and 3, higher robustness of Bristol PTN in L-space
correlates with the higher value of κL as compared with the corresponding
data for Lviv PTN.

City κL κP κC
Bristol 4.493 145.456 43.104
Lviv 3.099 138.413 44.245

Table 3. Molloy-Reed parameter κ (5.2) for Lviv and Bris-
tol PTNs in L-, P-, and C-spaces.

6. Diffusion, random walks, fractals and PTN modeling

One more analogy with physical phenomenon that has been exploited within
PTN analysis and modeling is given by diffusion. Indeed, being generally
understood as the spreading of any (material or non-material) objects, dif-
fusion theory is widely applied in different fields. Whereas in its original
formulation diffusion is driven by the gradient of concentration, numerous
applications of diffusion concept consider it in terms of random walks (RWs)
[46]. In such a formulation, the mean square distance 〈R2〉 between the be-
ginning and the end of a RW of N steps scales as:

(6.1) 〈R2〉 = N ,

here each RW step is assumed to be of equal unit length.
If one forbids a random walker to cross its trajectory (the so-call self-

avoiding walk, SAW), the scaling dependence still holds asymptotically,
however with a different power law:

(6.2) 〈R2〉 ∼ N2ν .

Exponent ν is universal: it is the same for all SAWs on different lattices
with the same dimensionality of space d. Obviously, ν = 1/2 for the RW
in Eq. (6.1). For a SAW in d = 2, the exact value of the exponent is
known to be: ν = 3/4 [55]. It is remarkable that similar scaling has been
found for the mean square distance between different stations belonging to
the same PTN route, see Fig. 7, where this is demonstrated for different
modes of transport in Berlin [27]. Later it was shown that the behavior of
the route chains in a city is better described by the Lévy flight process [24]
rather than a SAW. Such empirical observation about SAW scaling of PTN
routes seems to be counter-intuitive. One of possible explanations is that
the shapes of such routes may result from an optimization with respect to
total passenger traveling time and area coverage [26,29].
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Figure 7. Berlin PTN: Mean distance R as function of the
number of stations traveled by different modes of transport
in Berlin. Solid line shows result for a SAW at d = 2 [55] and
for a simulated city [27], see the text for more explanation.

Figure 8. PTN map of a simulated city of with 1024 routes
of 64 stations each [26].

The above observation gave rise to further exploiting the analogy with
SAW and resulted in a model of city PTN. In the framework of the model
suggested in [26] and further exploited in [38], an essential feature of a PTNs
growth is attributed to the attachment of station sequences that represent
new routes, each of them being modeled as a SAW. In this respect the
model differs from the standard network growth models, such as preferential
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attachment type models where networks increase due to adding new nodes
[4, 5]. Another obvious feature of the model is its embedding in the two-
dimensional space. One of the examples of simulated PTN maps for a city
with 1024 public transport routes of 64 stations each is shown in Fig. 8.
Such a network growth model captures many special features of real world
PTNs.

It is instructive to note here, that the “mass” of a RW or of a SAW ex-
pressed as its chemical length N , scales with its typical sizeR as a power law
with the non-integer value of the exponent ν, see Eqs. (6.1), (6.2). In this
respect random walks differ from the usual d-dimensional objects, where
the scaling holds with the exponent equal to space dimensionality. Indeed
both RW and SAW are well-established examples of fractals [23]. The above
discussed scaling in d = 2 space brings about their fractal dimensionalities
df = 2 and df = 4/3 for RW and SAW correspondingly. The concept
of fractals has been actively exploited in quantitative description of differ-
ent communication systems. For the PTNs and railway networks, fractal
structures have been analyzed for different subnetworks within Lyon [71],
Stuttgart [30], Paris [7, 8], several Rhine towns [7], Seul [43]. These papers
analyzed the density of stations, the total length of track as a function of
the distance from the center of the network, the mean distance as a function
of number of stations traveled. The distributions of inter-station distances
of consecutive PTN stations were shown to have power-law tails compatible
with a Lévy-flight model [24].

  

Figure 9. London PTN. The radius Rc ' 15.4 km corre-
sponds to the transition from the compact central area to
the rarefied space with df < 2 [19] .



Physicist’s approach to public transportation networks... 85

Recently, the fractal dimension of several PTNs in Great Britain has been
considered, providing a useful interpretation on a PTN serviceability. This
opens a procedure to apply fractal dimensionality as a key performance
indicator and provides additional characteristics of a PTN functional effec-
tiveness [19]. To this end, one investigates the “mass” (number of stations)
of the network N(R) as a function of the radius R about PTN center. It was
found that for a small value of R < Rc, the PTN tends to cover uniformly
the city area while the inhomogeneities in structure are observed at the
peripheral area. In the central area one observes scaling N ∼ R2 whereas
N ∼ Rdf for R > Rc. Such behavior was found to be universal for all PTNs
under analysis, whereas the value of Rc was system-dependent, differing for
different PTNs. In Fig. 9, we show an example of such behavior observed
for London PTN with Rc ' 15.4 km [19].

7. Conclusions and outlook

Physics is an archetype example of a natural science; with its use of mathe-
matics, intricate interplay of experiment-theory-simulation and with a pri-
macy for experiment, well equipped to lend itself to other fields of science.
For these reasons it comes as no surprise that over the last few decades
physics (or at least physicists) has spread into a much wider field of an-
alyzing problems which traditionally might have been thought to be the
subject of other sciences. Here, physics seeks to better understand how
simple rules lead to the diverse and cooperative behavior found in complex
systems [41, 72]. Such complex systems can be found in biology, sociology
and in other disciplines where interactions between agents play important
roles. Since all complex systems involve cooperative behavior between many
interconnected components, the fields of phase transitions and critical phe-
nomena and complex networks give a very natural conceptual and method-
ological framework for their study. As we aimed to show in this paper,
utilizing a “physical” approach to study a “unphysically”/“man-made” sys-
tem of interacting agents provides an effective methodology to contribute
to a better understanding and prognosis of their collective behavior.
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